In the genome of Drosophila melanogaster, there are 19 phosphoprotein phosphatase (PPP) catalytic subunit coding genes. Seven of the novel members of the gene family turned out to be Drosophila-specific. The expression and evolution of these genes was investigated in the present study. CG11597 is a recently evolved gene that is expressed during all stages of morphogenesis in D. melanogaster. In contrast, the transcription of PpD5, PpD6, Pp1-Y1, and Pp1-Y2 genes is restricted to the pupa and imago developmental stages and to the testis of the males, just as that of the previously characterized PpY-55A and PpN58A. With the exception of the Y-localized Pp1-Y1 and Pp1-Y2, the testis-specific phosphatase genes are expressed in X/0 males, while none of them are expressed in XX/Y females. The mRNA of PpD5, Pp1-Y1, and PpY-55A were detected in the developing cysts by in situ hybridization, in contrast with the PpD6 transcript that was found in the distal ends of elongating spermatids. The latter localization suggests post-meiotic expression. The comparison of PPP genes in five Drosophila species revealed that the sequence of the six testis-specific phosphatases changed more rapidly than that of the housekeeping phosphatases. Our results support the "faster male" hypothesis. On the other hand, the male-biased expression of the six genes remained conserved during evolution despite the fact that Pp1-Y1, Pp1-Y2, and PpD6 moved from autosomes to the Y chromosome. Interestingly, the PpD6 gene was found to be Y-linked only in Drosophila ananassae.
Phosphoprotein phosphatases (PPP), these ancient and important regulatory enzymes are present in all eukaryotic organisms. Based on the genome sequences of 12 Drosophila species we traced the evolution of the PPP catalytic subunits and noted a substantial expansion of the gene family. We concluded that the 18–22 PPP genes of Drosophilidae were generated from a core set of 8 indispensable phosphatases that are present in most of the insects. Retropositons followed by tandem gene duplications extended the phosphatase repertoire, and sporadic gene losses contributed to the species specific variations in the PPP complement. During the course of these studies we identified 5, up till now uncharacterized phosphatase retrogenes: PpY+, PpD5+, PpD6+, Pp4+, and Pp6+ which are found only in some ancient Drosophila. We demonstrated that all of these new PPP genes exhibit a distinct male specific expression. In addition to the changes in gene numbers, the intron-exon structure and the chromosomal localization of several PPP genes was also altered during evolution. The G−C content of the coding regions decreased when a gene moved into the heterochromatic region of chromosome Y. Thus the PPP enzymes exemplify the various types of dynamic rearrangements that accompany the molecular evolution of a gene family in Drosophilidae.
We have developed a unified, versatile vector set for expression of recombinant proteins, fit for use in any bacterial, yeast, insect or mammalian cell host. The advantage of this system is its versatility at the vector level, achieved by the introduction of a novel expression cassette. This cassette contains a unified multi-cloning site, affinity tags, protease cleavable linkers, an optional secretion signal, and common restriction endonuclease sites at key positions. This way, genes of interest and all elements of the cassette can be switched freely among the vectors, using restriction digestion and ligation without the need of polymerase chain reaction (PCR). This vector set allows rapid protein expression screening of various hosts and affinity tags. The reason behind this approach was that it is difficult to predict which expression host and which affinity tag will lead to functional expression. The new system is based on four optimized and frequently used expression systems (Escherichia coli pET, the yeast Pichia pastoris, pVL and pIEx for Spodoptera frugiperda insect cells and pLEXm based mammalian systems), which were modified as described above. The resulting vector set was named pONE series. We have successfully applied the pONE vector set for expression of the following human proteins: the tumour suppressor RASSF1A and the protein kinases Aurora A and LIMK1. Finally, we used it to express the large multidomain protein, Rho-associated protein kinase 2 (ROCK2, 164 kDa) and demonstrated that the yeast Pichia pastoris reproducibly expresses the large ROCK2 kinase with identical activity to the insect cell produced counterpart. To our knowledge this is among the largest proteins ever expressed in yeast. This demonstrates that the cost-effective yeast system can match and replace the industry-standard insect cell expression system even for large and complex mammalian proteins. These experiments demonstrate the applicability of our pONE vector set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.