Although late sodium current (I Na-late) has long been known to contribute to plateau formation of mammalian cardiac action potentials, lately it was considered as possible target for antiarrhythmic drugs. However, many aspects of this current are still poorly understood. The present work was designed to study the true profile of I Nalate in canine and guinea pig ventricular cells and compare them to I Na-late recorded in undiseased human hearts. I Na-late was defined as a tetrodotoxin-sensitive current, recorded under action potential voltage clamp conditions using either canonic-or self-action potentials as command signals. Under action potential voltage clamp conditions the amplitude of canine and human I Na-late monotonically decreased during the plateau (decrescendoprofile), in contrast to guinea pig, where its amplitude increased during the plateau (crescendo profile). The decrescendo-profile of canine I Na-late could not be converted to a crescendo-morphology by application of ramplike command voltages or command action potentials recorded from guinea pig cells. Conventional voltage clamp experiments revealed that the crescendo I Na-late profile in guinea pig was due to the slower decay of I Na-late in this species. When action potentials were recorded from multicellular ventricular preparations with sharp microelectrode, action potentials were shortened by tetrodotoxin, which effect was the largest in human, while smaller in canine, and the smallest in guinea pig preparations. It is concluded that important interspecies differences exist in the behavior of I Na-late. At present canine myocytes seem to represent the best model of human ventricular cells regarding the properties of I Na-late. These results should be taken into account when pharmacological studies with I Na-late are interpreted and extrapolated to human. Accordingly, canine ventricular tissues or myocytes are suggested for pharmacological studies with I Na-late inhibitors or modifiers. Incorporation of present data to human action potential models may yield a better understanding of the role of I Na-late in action potential morphology, arrhythmogenesis, and intracellular calcium dynamics. with physiological and pathological significance recognized long ago [1-3], its pathophysiological role in LQT3 [4] and heart failure [5-8] has been emphasized only in the last decades. I Na-late-as an inward current-contributes to plateau formation and is responsible for largely
The role of transient receptor potential melastatin 4 (TRPM4) channels has been frequently tested using their inhibitor 9-phenanthrol in various cardiac preparations; however, the selectivity of the compound is uncertain. Therefore, in the present study, the concentration-dependent effects of 9-phenanthrol on major ionic currents were studied in canine isolated ventricular cells using whole-cell configuration of the patch-clamp technique and 10 mM BAPTA-containing pipette solution to prevent the Ca-dependent activation of TRPM4 channels. Transient outward (I), rapid delayed rectifier (I), and inward rectifier (I) K currents were suppressed by 10 and 30 μM 9-phenanthrol with the blocking potency for I < I < I and partial reversibility. L-type Ca current was not affected up to the concentration of 30 μM. In addition, a steady outward current was detected at voltages positive to -40 mV in 9-phenanthrol, which was larger at more positive voltages and larger 9-phenanthrol concentrations. Action potentials were recorded using microelectrodes. Maximal rate of depolarization, phase-1 repolarization, and terminal repolarization were decreased and the plateau potential was depressed by 9-phenanthrol (3-30 μM), congruently with the observed alterations of ionic currents. Significant action potential prolongation was observed by 9-phenanthrol in the majority of the studied cells, but only at 30 μM concentration. In conclusion, 9-phenanthrol is not selective to TRPM4 channels in canine ventricular myocardium; therefore, its application as a TRPM4 blocker can be appropriate only in expression systems but not in native cardiac cells.
Enhancement of the late Na+ current (INaL) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS967 is an agent considered as a selective blocker of INaL. In the present study, effects of GS967 on INaL and action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. The effects of GS967 (1 µM) were compared to those of the class I/B antiarrhythmic compound mexiletine (40 µM). Under conventional voltage clamp conditions, INaL was significantly suppressed by GS967 and mexiletine, causing 80.4 ± 2.2% and 59.1 ± 1.8% reduction of the densities of INaL measured at 50 ms of depolarization, and 79.0 ± 3.1% and 63.3 ± 2.7% reduction of the corresponding current integrals, respectively. Both drugs shifted the voltage dependence of the steady-state inactivation curve of INaL towards negative potentials. GS967 and mexiletine dissected inward INaL profiles under AP voltage clamp conditions having densities, measured at 50% of AP duration (APD), of −0.37 ± 0.07 and −0.28 ± 0.03 A/F, and current integrals of −56.7 ± 9.1 and −46.6 ± 5.5 mC/F, respectively. Drug effects on peak Na+ current (INaP) were assessed by recording the maximum velocity of AP upstroke (V+max) in multicellular preparations. The offset time constant was threefold faster for GS967 than mexiletine (110 ms versus 289 ms), while the onset of the rate-dependent block was slower in the case of GS967. Effects on beat-to-beat variability of APD was studied in isolated myocytes. Beat-to-beat variability was significantly decreased by both GS967 and mexiletine (reduction of 42.1 ± 6.5% and 24.6 ± 12.8%, respectively) while their shortening effect on APD was comparable. It is concluded that the electrophysiological effects of GS967 are similar to those of mexiletine, but with somewhat faster offset kinetics of V+max block. However, since GS967 depressed V+max and INaL at the same concentration, the current view that GS967 represents a new class of drugs that selectively block INaL has to be questioned and it is suggested that GS967 should be classified as a class I/B antiarrhythmic agent.
Transient receptor potential melastatin 4 (TRPM4) plays an important role in many tissues, including pacemaker and conductive tissues of the heart, but much less is known about its electrophysiological role in ventricular myocytes. Our earlier results showed the lack of selectivity of 9-phenanthrol, so CBA ((4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) was chosen as a new, potentially selective inhibitor. Goal: Our aim was to elucidate the effect and selectivity of CBA in canine left ventricular cardiomyocytes and to study the expression of TRPM4 in the canine heart. Experiments were carried out in enzymatically isolated canine left ventricular cardiomyocytes. Ionic currents were recorded with an action potential (AP) voltage-clamp technique in whole-cell configuration at 37 °C. An amount of 10 mM BAPTA was used in the pipette solution to exclude the potential activation of TRPM4 channels. AP was recorded with conventional sharp microelectrodes. CBA was used in 10 µM concentrations. Expression of TRPM4 protein in the heart was studied by Western blot. TRPM4 protein was expressed in the wall of all four chambers of the canine heart as well as in samples prepared from isolated left ventricular cells. CBA induced an approximately 9% reduction in AP duration measured at 75 and 90% of repolarization and decreased the short-term variability of APD90. Moreover, AP amplitude was increased and the maximal rates of phase 0 and 1 were reduced by the drug. In AP clamp measurements, CBA-sensitive current contained a short, early outward and mainly a long, inward current. Transient outward potassium current (Ito) and late sodium current (INa,L) were reduced by approximately 20 and 47%, respectively, in the presence of CBA, while L-type calcium and inward rectifier potassium currents were not affected. These effects of CBA were largely reversible upon washout. Based on our results, the CBA induced reduction of phase-1 slope and the slight increase of AP amplitude could have been due to the inhibition of Ito. The tendency for AP shortening can be explained by the inhibition of inward currents seen in AP-clamp recordings during the plateau phase. This inward current reduced by CBA is possibly INa,L, therefore, CBA is not entirely selective for TRPM4 channels. As a consequence, similarly to 9-phenanthrol, it cannot be used to test the contribution of TRPM4 channels to cardiac electrophysiology in ventricular cells, or at least caution must be applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.