Abstract:We will present an approach to numerical simulation on recursively structured adaptive discretisation grids. The respective grid generation process is based on recursive bisection of triangles along marked edges. The resulting refinement tree is sequentialised according to a Sierpinski space-filling curve, which leads to both minimal memory requirements and inherently cache-efficient processing schemes. The locality properties induced by the space-filling curve are even retained throughout adaptive refinement of the grid. We demonstrate the efficiency of the approach by implementing a multilevel-preconditioned conjugate gradient solver for a simple, yet adaptive, test problem: solving Poisson's equation on a re-entrant corner problem.Keywords: adaptive grid generation; space-filling curves; cache efficiency; simulation.Reference to this paper should be made as follows: Bader, M., Schraufstetter, S., Vigh, C.A. and Behrens, J. (2008) 'Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves', Int.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.