We consider the problem of scheduling a sequence of tasks in a multi-processor system with conflicts. Conflicting processors cannot process tasks at the same time. At certain times new tasks arrive in the system, where each task specifies the amount of work (processing time) added to each processor's workload. Each processor stores this workload in its input buffer. Our objective is to schedule task execution, obeying the conflict constraints, and minimizing the maximum buffer size of all processors. In the off-line case, we prove that, unless P = NP, the problem does not have a polynomial-time algorithm with a polynomial approximation ratio. In the on-line case, we provide the following results: (i) a competitive algorithm for general graphs, (ii) tight bounds on the competitive ratios for cliques and complete k-partite graphs, and (iii) a (∆/2 + 1)-competitive algorithm for trees, where ∆ is the diameter. We also provide some results for small graphs with up to 4 vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.