An objective of designing molecular vehicles exhibiting viruslike transgene delivery capabilities but with low toxicity and immunogenicity continues to drive synthetic vector development. As no single step within the gene delivery pathway represents the critical limiting barrier for all vector types under all circumstances, improvements in synthetic vehicle design may be aided by quantitative analysis of the contributions of each step to the overall delivery process. To our knowledge, however, synthetic and viral gene delivery methods have not yet been explicitly compared in terms of these delivery pathway steps in a quantitative manner. As a first address of this challenge, we compare here quantitative parameters characterizing intracellular gene delivery steps for an E1/E3-deleted adenoviral vector and three polyethylenimine (PEI)-based vector formulations, as well as the liposomal transfection reagent Lipofectamine and naked DNA; the cargo is a plasmid encoding the b-galactosidase gene under a CMV promoter, and the cell host is the C3A human hepatocellular carcinoma line. The parameters were determined by applying a previously validated mathematical model to transient time-course measurements of plasmid uptake and trafficking (from whole-cell and isolated nuclei lysates, by real-time quantitative PCR), and gene expression levels, enabling discovery of those for which the adenoviral vector manifested superiority. Parameter-sensitivity analysis permitted identification of processes most critically ratelimiting for each vector. We find that the adenoviral vector advantage in delivery appears to reside partially in its import to the nuclear compartment, but that its vast superiority in transgene expression arises predominantly in our situation from postdelivery events: on the basis of per-nuclear plasmid, expression efficiency from adenovirus is superior by orders of magnitude over the PEI vectors. We find that a chemical modification of a PEI-based vector, which substantially improves its performance, appears to do so by enhancing certain trafficking rate parameters, such as binding and uptake, endosomal escape, and binding to nuclear import machinery, but leaves endosomal escape as a barrier over which transgene delivery could be most sensitively increased further for this polymer.
One way to deliver transgenes to cells in a selective manner is to target the delivery vehicles, or vectors, to specific cell‐surface receptors as a first step toward ulimate transport of the gene to the nucleus for expression. While selective delivery, although often to undesired cell types, occurs naturally for some viral vectors and can be achieved for nonviral vehicles, current understanding and control of the delivery mechanism is inadequate for many therapeutic applications. The complicated nature of receptor‐mediated transgene uptake and transport requires improved analysis to more effectively evaluate delivery vehicles. As receptor‐mediated pathways for gene delivery typically involve vector binding, internalization, subcellular trafficking, vesicular escape, nuclear translocation, and unpackaging for transcription, each of these processes offer mechanisms that can be exploited to enhance targeted gene delivery via properly designed vehicles. For the purpose of this review, current targeted gene delivery vehicles are divided into three approaches: viral, synthetic, and hybrid vectors. Each approach possesses advantages as well as disadvantages at the present time for in vitro and in vivo application, and provides particular challenges to overcome in order to gain significantly improved targeted delivery properties. Quantitative experiments and mathematical modeling of the gene delivery pathway will serve to provide insight into molecular mechanisms and rate‐limiting steps for effective gene expression. Information on molecular mechanisms obtained by such methodologies can then be applied to specific vectors, whether viral, synthetic, or hybrid, allowing for the creation of targeted, effective, and safe gene therapeutics. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 70: 593–605, 2000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.