Summary• The mechanism uncoupling isoprene emission and photosynthesis under drought was investigated in Populus alba saplings.• Isoprene emission, incorporation of 13 C into the isoprene molecule, isoprene synthase (ISPS) activity, concentration and gene expression, and photosynthesis were measured as a function of the fraction of transpirable soil water (FTSW) and in plants recovering from drought.• Photosynthesis sharply declined below FTSW 30 (a FTSW of 30%) and its inhibition was not caused by metabolic factors. A decline in isoprene emission was only evident towards the FTSW endpoint. 13 C incorporation into isoprene was lower when photosynthesis was constrained by drought. ISPS activity was inhibited by mild drought, while ISPS gene expression and concentration declined in concert with isoprene emission at the FTSW endpoint. Following rewatering, isoprene emission was higher than, and photosynthesis was similar to, prestress values. ISPS activity and concentration, and 13 C incorporation into isoprene, also rapidly recovered to prestress values, while ISPS gene expression remained low in rewatered plants.• Our experiment revealed a larger contribution of alternative carbon sources to isoprene emission only when photosynthesis was dramatically constrained by drought. Isoprene emission was likely controlled at the posttranscriptional level under severe drought.
Among the volatile organic compounds (VOCs) emitted by plants, some are characteristic of stress conditions, but their biosynthesis and the metabolic and environmental control over the emission are still unclear. We performed experiments to clarify whether (1) the emission following wounding can occur at distance from the wounding site, from VOC pools subjected to metabolic signals; and (2) the emission of biogenic VOCs generated by membrane damage (e.g. consequent to wounding or ozone exposure) can also be induced by exposure to high light and high temperature, recurrent in nature. In Phragmites australis , leaf cutting caused large and rapid bursts of acetaldehyde both at the cutting site and on parts of the cut leaf distant from the cutting site. This emission was preceded by a transient stomatal opening and did not occur in conditions preventing stomatal opening. This suggests the presence of a large pool of leaf acetaldehyde whose release is under stomatal control. VOCs other than isoprene, particularly acetaldehyde and (E)-2-hexenal, one of the C-6 compounds formed by the denaturation of membrane lipids, were released by leaves exposed to high temperature and high light. The high-temperature treatment (45 ∞ C) also caused a rapid stimulation and then a decay of isoprene emission in Phragmites leaves. Isoprene recovered to the original emission level after suspending the high-temperature treatment, suggesting a temporary deficit of photosynthetically formed substrate under high temperature. Emission of C-6 compounds was slowly induced by high temperature, and remained high, indicating that membrane denaturation occurs also after suspending the high-temperature treatment. Conversely, the emission of C-6 compounds was limited to the high-light episode in Phragmites . This suggests that a membrane denaturation may also occur in conditions that do not damage other important plant processes such as the photochemistry of photosynthesis of photoinhibitioninsensitive plants. In the photoinhibition-sensitive Arabidopsis thaliana mutant NPQ1, a large but transient emission of (E)-2-hexenal was also observed a few minutes after the high-light treatment, indicating extensive damage to the membranes. However, (E)-2-hexenal emission was not observed in Arabidopsis plants fumigated with isoprene during the high-light treatment. This confirms that isoprene can effectively protect cellular membranes from denaturation. Our study indicates that large, though often transient, VOC emissions by plants occur in nature. In particular, we demonstrate that VOCs can be released by much larger tissues than those wounded and that even fluctuations of light and temperature regularly observed in nature can induce their emissions. This knowledge adds information that is useful for the parameterization of the emissions and for the estimate of biogenic VOC load in the atmosphere.
;In order to understand the physiological functions of reactive oxygen species (ROS) generated in leaves, their direct measurement in vivo is of special importance. Here we report experiments with two dansyl-based ROS sensors, the singlet oxygen specific DanePy and HO-1889NH, which is reactive to both singlet oxygen and superoxide radicals. Here we report in vivo detection of 1 O 2 and O 2 -• by fluorescence quenching of two dansyl-based ROS sensors, the 1 O 2 specific DanePy and HO-1889NH, which was reactive with both 1 O 2 and O 2 -• . The ROS sensors were administered to spinach leaves through a pinhole, and then the leaves were exposed to either excess photosynthetically active radiation or UV (280-360 nm) radiation. Microlocalization of the sensors' fluorescence and its ROS-induced quenching was followed with confocal laser scanning microscopy and with fluorescence imaging. These sensors were specifically localized in chloroplasts. Quenching analysis indicated that the leaves exposed to strong light produced 1 O 2 , but hardly any O 2 -• . On the other hand, the dominant ROS in UV-irradiated leaves was O 2 -• , while 1 O 2 was minor.
SummaryBlack poplar (Populus nigra L.) plants grown at 25 and 35°C were subjected to drought stress to assess the combined impact of two consequences of global climate change -rising temperature and drought -on isoprene biosynthesis and emission. At both temperatures, photosynthesis was inhibited by moderate drought, but isoprene emission only decreased when drought was prolonged. The mRNA transcript level, protein concentration and activity of isoprene synthase (ISPS) changed in concert with isoprene emission during drought stress. However, ISPS activity decreased before isoprene emission during drought development, indicating a tighter control of the emission at a transcriptional or post-transcriptional level under moderate drought stress, and at both temperatures. A residual isoprene emission was measured when photosynthesis was totally inhibited after 35 days of drought. This photosynthesis-independent emission of isoprene was probably dependent on a cytosolic carbon supply as all the properties of ISPS were drastically inhibited. Isoprene emission was associated with dark respiration during the entire drought stress period, and at both temperatures, indicating that the two processes are sustained by, but do not compete for, the same carbon source. Isoprene emission was directly related to phosphoenolpyruvate carboxylase activity in plants grown at 25°C and inversely related in plants grown at 35°C, suggesting a strong temperature control on the regulation of the pyruvate flowing from the cytosol to the plastidic isoprenoid biosynthetic pathway under drought stress and recovery. In re-watered plants, the temperature control on isoprene emission was suppressed, despite complete recovery of photosynthesis and ISPS activity similar to levels in plants subjected to mild drought stress. Our results reveal the overriding effects of drought on isoprene emission, possibly affecting protein level or substrate supply. These effects may largely offset the predicted impact of rising temperatures on the emission of isoprene in terrestrial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.