The groundbreaking discovery, that somatic mammalian cells can be epigenetically reprogrammed to a pluripotent state through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and c-myc, has yielded a new cell type for potential application in regenerative medicine, the induced Pluripotent Stem Cells (iPSCs). Since the first demonstration of creating iPSCs in 2006 great efforts have been made into improving iPS cell generation methods and understanding the reprogramming mechanism as well as the nature of iPSCs. The iPSCs technique makes it possible to produce patient-specific pluripotent stem cells for transplantation therapy without immune rejection. However, some restriction still remain, including viral vector integration into the genome, the existence of exogenous oncogenic factors and low induction efficiency. In this review we discuss recent advances in methods of generating safer iPSCs lines and their possible use for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.