AI-driven protein structure prediction, most notably AlphaFold2 (AF2) opens new frontiers for almost all fields of structural biology. As traditional structure prediction methods for transmembrane proteins were both complicated and error prone, AF2 is a great help to the community. Complementing the relatively meager number of experimental structures, AF2 provides 3D predictions for thousands of new alpha-helical membrane proteins. However, the lack of reliable structural templates and the fact that AF2 was not trained to handle phase boundaries also necessitates a delicate assessment of structural correctness. In our new database, Transmembrane AlphaFold database (TmAlphaFold database), we apply TMDET, a simple geometry-based method to visualize the likeliest position of the membrane plane. In addition, we calculate several parameters to evaluate the location of the protein into the membrane. This also allows TmAlphaFold database to show whether the predicted 3D structure is realistic or not. The TmAlphaFold database is available at https://tmalphafold.ttk.hu/.
This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.