As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
A Gram-stain-negative, non-flagellated, short rod-shaped bacterium, designated XY-R6, was isolated from the rhizosphere soil of a mangrove plant, Kandelia candel (L.) Druce, in Mai Po Nature Reserve, Hong Kong. Growth of strain XY-R6 was observed at pH 5.0-9.5 (optimum 6.5-8.0), between 8 and 42 °C (optimum 28-34 °C), and in the presence of 0-9.5 % (w/v) NaCl (optimum 1-4 %). The predominant isoprenoid quinone was ubiquinone-10. The major fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) (55.61 %), C19 : 0cycloω8c (21.59 %) and C16 : 0 (11.24 %). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, aminolipid, phosphatidylcholine and diphosphatidylglycerol. The genomic DNA G+C content of strain XY-R6 was 69.3 mol%. Phylogenetic analyses, based on 16S rRNA gene sequences, revealed that strain XY-R6 belonged to the family Rhodobacteraceae of the class Alphaproteobacteria and formed a distinct lineage, showing the highest gene sequence similarities to the members of genus Wenxinia(94.5-94.3 %), followed by the genera Profundibacterium (94.3 %), Defluviimonas(93.8-92.5 %), Oceanicola (93.8 %) and Cereibacter (93.7 %). Similarities to other genera within the family Rhodobacteraceae were below 94.0 %. Based on comprehensive phenotypic, phylogenetic and chemotaxonomic characterization, it is indicated that strain XY-R6 represents a novel species of a new genus in the family Rhodobacteraceae, for which the name Kandeliimicrobium roseum gen. nov., sp. nov. is proposed, with XY-R6 (=MCCC 1K01498=KCTC 52266=DSM 104294) as the type strain.
Marine biofouling poses a severe threat to maritime and aquaculture industries. To prevent the attachment of marine biofouling organisms on man-made structures, countless cost and effort was spent annually. In particular, most attention has been paid on the development of efficient and environmentally friendly fouling-resistant coatings, as well as larval settlement mechanism of several major biofouling invertebrates. In this study, polydimethylsiloxane (PDMS) micropost arrays were utilized as the settlement substrata and opposite tractions were identified during early settlement of the barnacle Amphibalanus amphitrite and the bryozoan Bugula neritina. The settling A. amphitrite pushed the periphery microposts with an average traction force of 376.2 nN, while settling B. neritina pulled the periphery microposts with an average traction force of 205.9 nN. These micropost displacements are consistent with the body expansion of A. amphitrite during early post-settlement metamorphosis stage and elevation of wall epithelium of B. neritina during early pre-ancestrula stage, respectively. As such, the usage of micropost array may supplement the traditional histological approach to indicate the early settlement stages or even the initiation of larval settlement of marine fouling organisms, and could finally aid in the development of automatic monitoring platform for the real-time analysis on this complex biological process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.