A mobile-phone-based diagnostic tool, which most of the population can easily access, could be a game changer in increasing the number of examinations of people with dental caries. This study aimed to apply a deep learning algorithm in diagnosing the stages of smooth surface caries via smartphone images. Materials and methods: A training dataset consisting of 1902 photos of the smooth surface of teeth taken with an iPhone 7 from 695 people was used. Four deep learning models, consisting of Faster Region-Based Convolutional Neural Networks (Faster R-CNNs), You Only Look Once version 3 (YOLOv3), RetinaNet, and Single-Shot Multi-Box Detector (SSD), were tested to detect initial caries lesions and cavities. The reference standard was the diagnosis of a dentist based on image examination according to the International Caries Classification and Management System (ICCMS) classification. Results: For cavitated caries, YOLOv3 and Faster R-CNN showed the highest sensitivity among the four tested models, at 87.4% and 71.4%, respectively. The sensitivity levels of these two models were only 36.9 % and 26% for visually non-cavitated (VNC). The specificity of the four models reached above 86% for cavitated caries and above 71% for VNC. Conclusion: The clinical application of YOLOv3 and Faster R-CNN models for diagnosing dental caries via smartphone images was promising. The current study provides a preliminary insight into the potential translation of AI from the laboratory to clinical practice.
Artificial neural network (ANN) has been well applied in pattern recognition, classification and machine learning thanks to its high performance. Most ANNs are designed by a static structure whose weights are trained during a learning process by supervised or unsupervised methods. These training methods require a set of initial weights values, which are normally randomly generated, with different initial sets of weight values leading to different convergent ANNs for the same training set. Dealing with these drawbacks, a trend of dynamic ANN was invoked in the past year. However, they are either too complex or far from practical applications such as in the pathology predictor in binary multi-input multioutput (MIMO) problems, when the role of a symptom is considered as an agent, a pathology predictor's outcome is formed by action of active agents while other agents' activities seem to be ignored or have mirror effects. In this paper, we propose a new dynamic structural ANN for MIMO problems based on the dependency graph, which gives clear cause and result relationships between inputs and outputs. The new ANN has the dynamic structure of hidden layer as a directed graph showing the relation between input, hidden and output nodes. The properties of the new dynamic structural ANN are experienced with a pathology problem and its learning methods' performances are compared on a real well known dataset. The result shows that both approaches for structural learning process improve the quality of ANNs during learning iteration.
Multi-attributes decision-making problem in dynamic neutrosophic environment is an open and highly-interesting research area with many potential applications in real life. The concept of the dynamic interval-valued neutrosophic set and its application for the dynamic decision-making are proposed recently, however the inter-dependence among criteria or preference is not dealt with in the proposed operations to well treat inter-dependence problems. Therefore, the definitions, mathematical operations and its properties are mentioned and discussed in detail.Then, Choquet integral-based distance between dynamic inteval-valued neutrosophic sets is defined and used to develop a new decision making model based on the proposed theory. A practical application of proposed approach is constructed and tested on the data of lecturers' performance collected from Vietnam National University (VNU) to illustrate the efficiency of new proposal.
Dynamic multi-criteria decision-making (DMCDM) models have many meaningful applications in real life in which solving indeterminacy of information in DMCDMs strengthens the potential application of DMCDM. This study introduces an extension of dynamic internal-valued neutrosophic sets namely generalized dynamic internal-valued neutrosophic sets. Based on this extension, we develop some operators and a TOPSIS method to deal with the change of both criteria, alternatives, and decision-makers by time. In addition, this study also applies the proposal model to a real application that facilitates ranking students according to attitude-skill-knowledge evaluation model. This application not only illustrates the correctness of the proposed model but also introduces its high potential appliance in the education domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.