Several matrix metalloproteinases (MMPs) and psychological stress are associated with poor cancer prognosis. The current work goal was to determine MMPs’ and stress hormones’ blood concentrations from lung adenocarcinoma (LAC) patients. Patients were divided into the following groups: tobacco smokers (TS), wood smoke-exposed (W), passive smokers (PS), TS exposed to wood smoke (TW), and patients with no recognizable risk factor (N). MMPs, tissue inhibitors of metalloproteinases (TIMPs), adrenaline, noradrenaline, and cortisol blood concentrations were measured by ELISA. Zymography and Western blot assays were performed to determine MMP-2 and MMP-9 active and latent forms. MMP-2, MMP-3, MMP-9, and TIMP-1 blood concentrations, and MMP-9 gelatinase activity were augmented, while MMP-12, MMP-14, and TIMP-2 were diminished in LAC patients. Cortisol was increased in LAC samples. Adrenaline concentrations were higher in W, TS, and TW, and noradrenaline was increased in W and N groups. Positive correlations were observed among cortisol and TIMP-1 ( r s = 0.392 ) and TIMP-2 ( r s = 0.409 ) in the W group and between noradrenaline and MMP-2 ( r s = 0.391 ) in the N group. MMPs’ blood concentration increments can be considered as lung cancer progression markers. Although stress hormones were also augmented, only weak correlations were observed between them and MMPs and TIMPs.
Background: Type I collagen synthesis and degradation are important events during Mycobacterium tuberculosis (MTb) granuloma or cavity formation, and fibroblasts are cells involved in these processes. Objective: We examined the MTb effects on fibroblast collagen metabolism to understand the virulence factors involved in tuberculosis pathogenesis. Methods: Human lung fibroblasts were incubated with culture medium or sonicated MTb H37Ra (avirulent) or H37Rv (virulent) strains. The effects on collagen synthesis, fibroblast proliferation and collagenase activity were examined. Matrix metalloproteinase-1 (MMP-1), MMP-13 and tissue inhibitors of metalloproteinases (TIMP-1) mRNA levels were analyzed by quantitative real-time PCR amplification. Protein expression was explored by Western blot technique. Results: Collagen synthesis and fibroblast proliferation were significantly increased by H37Ra medium. In contrast, cells incubated with H37Rv medium showed an increase in collagenase activity. MMPs quantitative real-time PCR amplification revealed an increase on MMP-13 mRNA levels in fibroblasts cultured with H37Rv medium, with little effect observed on MMP-1 expression. Western blot assay demonstrated that H37Rv medium stimulated MMP-1 and MMP-13 proenzyme synthesis. This medium had a large effect on MMP-1 activation. TIMP-1 transcription was increased in cells incubated with medium and sonicated from H37Ra, although the highest TIMP-1 protein expression was found in fibroblasts cultured with sonicated H37Rv. Conclusions: These results suggest that MTb had direct effects on fibroblast collagen turnover, with differences in collagen synthesis and degradation depending on the strain.
Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase activity and MMP-1 expression increased, fibrosis remained, contributing to the irreversibility of bronchoconstriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.