An Ni-CeO2 catalyst with high Ni loading (50 wt.%) prepared by a salt-assisted solution combustion method was characterized by different methods and used for CO2 methanation. The specific surface area of the Ni-CeO2 catalyst prepared by salt-assisted solution combustion is 7 times that of the catalyst prepared by conventional solution combustion. The Ni-CeO2 catalyst prepared by salt-assisted solution combustion has smaller particle sizes of Ni and exhibits excellent activity at low temperatures. The high Ni loading and small Ni particle size can provide more metal Ni site and Ni-CeO2 interface, which help to improve the CO2 methanation performance.
Developing low-temperature nickel-based catalysts with good resistance to coking and sintering for dry reforming of methane (DRM) is of great significance. In this work, Ni (5 wt%) and CeO2 (5 wt%) were supported on SBA-15 porous material by glycine-assisted impregnation method to obtain Ni-CeO2/SBA-15-G catalyst. XRD and TEM results showed that the addition of glycine can effectively promote the dispersion of NiO and CeO2 in the pores of SBA-15. H2-TPR and XPS results confirmed the formation of stronger metal-support interaction. In addition, after the addition of glycine, the NixCe1−xOy solid solution content was increased significantly, meanwhile, the Ce3+ concentration was increased from 31% to 49%, accompanied by more oxygen vacancies and generation of active oxygen species. For the above reasons, Ni-CeO2/SBA-15-G had better catalytic performance in the low-temperature DRM test (20 h, 600 °C) with high GHSV (600,000 mL/gcat/h), its CH4 conversion after reaction of 20 h was 2 times that of Ni-CeO2/SBA-15-C catalyst prepared by a conventional impregnation method. TGA-DTA test also proved that Ni-CeO2/SBA-15-G almost completely eliminated carbon deposition. The above advantages of the Ni-CeO2/SBA-15-G catalyst may have originated from the complexation of glycine with metal cations and can prevent them from gathering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.