The extensive applications of graphene oxide (GO) inevitably lead to entry into the natural aquatic environment. However, information on its toxicity to emergent plants is still lacking. In this study, an emergent plant, Iris pseudacorus, was exposed to GO (1, 20, 80, and 140 mg·L−1) under hydroponic conditions for 15 weeks. Changes in plant growth were assessed by analyzing plant biomass and photosynthetic pigment contents; the photosynthesis response was verified by measuring chlorophyll a fluorescence; and the nutrient levels of the plant were evaluated. Results showed that GO at 20–140 mg·L−1 significantly increased plant dry weight by 37–84% and photosynthetic pigment contents by 26–178%, and 80 mg·L−1 was the optimal concentration. PSII activity, adjustment capacities of electron transport in PSII, the grouping or energetic connectivity between PSII units, light energy conversion efficiency, photosynthesis performance indexes (by 11–51%), and contents of several nutrient elements (N, Fe, and Cu) were increased by 49–69%, 34–84%, and 11–38%, respectively. These findings indicate that GO can enhance plant growth by promoting plant photosynthesis performance and improving plant nutrient levels, and has great application potential in promoting the growth and development of this emergent plant as a phytoremediation agent.
The bioenergy crop switchgrass (Panicum virgatum L.) has been recognized as friendly to the soil of cultivated land depending on the previous land use types and management practices. However, the effects of switchgrass establishment on soil properties at a broader depth when it is harvested annually without any fertilization in northern China largely remain unknown. To explore the impacts of unfertilized switchgrass on soil physical and chemical properties, 0–100 cm soil samples were collected from 7-year cropland-to-switchgrass conversion and the bare land (control). The results showed that switchgrass establishment increased soil total and capillary porosity, CFU numbers of the microbial communities (fungi, bacteria, and actinomycetes), contents of microbial biomass (carbon, nitrogen, and phosphorus), and water-soluble organic carbon, and decreased soil bulk density, mostly at 0–60 cm depths, compared to the control values. Notably, the annual harvest of switchgrass insignificantly increased soil total and available nitrogen contents and slightly reduced available phosphorus and potassium contents. In conclusion, long-term cropland conversion to unfertilized switchgrass could ameliorate soil properties and does not cause soil depletion. The output of this study could inspire governments and farmers to make large-scale use of switchgrass in the ecological restoration of abandoned cropland in north China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.