The nature of the Am(iii)/Eu(iii) separation for two types of ester and amide based ligands with a phenanthroline skeleton was systematically explored from a theoretical perspective.
The syntheses, structures, and photophysical properties of two new zinc(II) complexes bearing the tridentate N,N′‐dimethyl‐N,N′‐dipyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) ligand are presented. Structural investigations through single‐crystal X‐ray diffractometry, NMR spectroscopy, and density functional theory calculations revealed a diverse coordination behavior that depends on the counterion. Spectroscopic (UV/Vis and emission spectroscopy) and theoretical techniques (DFT and time‐dependent DFT calculations) were employed to explore the photophysical properties of the complexes.
In the probe limit, we study the holographic p-wave phase transition in the Gauss-Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss-Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU (2) Yang-Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability. Int. J. Mod. Phys. A 2014.29. Downloaded from www.worldscientific.com by MICHIGAN STATE UNIVERSITY on 02/03/15. For personal use only. Y.-B. Wu et al.symmetry of the system, which therefore models the s-wave superconductor phase transition, whereafter, holographic p-wave and d-wave superconductors were built, respectively, for details, see Refs. 4 and 5. Meanwhile, the critical behavior of the holographic model was studied analytically via the Sturm-Liouville (SL) eigenvalue method in Ref. 6. However, all the above works were investigated in the probe limit, where the backreaction of the matter field on the background is neglected, beyond which the holographic model was further investigated in Ref. 7. In addition to above conductor/superconductor models, the insulator/superconductor phase transition was modeled in the AdS soliton background. 8 Moreover, the holographic superconductor models were studied in the system including the magnetic field, [9][10][11][12] and were also extended in various backgrounds, especially in the Gauss-Bonnet space-times and the Lifshitz space-times, for example, in Refs. 13-24, where the results showed that the increasing magnetic field and the Gauss-Bonnet parameter as well as the Lifshitz exponent hinder the phase transition.On the other hand, the authors of Ref. 25 proposed a holographic p-wave superconductor model in the four-dimensional Schwarzschild-AdS black hole coupled to a Maxwell complex vector (MCV) field in the probe limit. The results showed that, for the lowest Landau level, even without the charge density, the vector condensate can be triggered when the applied magnetic field increases to a critical value, which is reminiscent of the quantum chromodynamics (QCD) vacuum phase transition, 26-28 while for the excited Landau level (i.e. the excited Landau level), the strong magnetic field protects the stability, which is similar to the case of the ordinary superconductors. 9,10,22 In Ref. 29, the holographic insulator/superconductor phase transition induced by the magnetic field was studied in the five-dimensional AdS soliton coupled to such a MCV field and the SU(2) Yang-Mills (YM) field, respectively. It was shown that the results are similar to the cas...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.