In the ultrasonic gas temperature measurement system, the principle is that the velocity of sound in gas is a function of temperature. But because the propagation speed of ultrasonic wave can be easily affected by humidity, the accuracy of the gas temperature measurement will be affected too. This dissertation will implement the ultrasonic gas temperature measurement system with humidity correction suitable for all kinds of environment humidity. This type of ultrasonic technique is a highly efficient algorithm with the advantages of both time-of-flight method and phase shift method. And the system is realized with a single-chip microcomputer-based with a relative humidity/water vapor pressure meter. The main advantages of this ultrasonic temperature measurement system are high resolution, using narrow-bandwidth ultrasonic transducer of low cost and ease of implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.