BackgroundBoth insufficient and excess iodine may produce thyroid disease. After salt iodization in China, the median urine iodine concentration (UIC) of children aged 8–10 years appeared adequate. However, it is unknown whether dietary changes due to rapid economic development in Shanghai have affected whole population iodine nutrition.ObjectiveTo assess dietary iodine intake, UIC and the prevalence of thyroid disease in the general population of Shanghai.DesignA cross-sectional survey was conducted with general participants aged 5–69 years (n = 7,904) plus pregnant and lactating women (n = 380 each) selected by stratified multistage sampling. The iodine concentrations in their salt, drinking water and urine were measured. Daily iodine intake was estimated using the total diet study approach. Serum thyroid hormone concentrations and thyroid-related antibodies were measured and thyroid ultrasonography was performed.ResultsThe median iodine concentration in salt was 29.5 mg/kg, and 12.8 µg/L in drinking water. Iodized salt, used by 95.3% of participants, contributed 63.5% of total dietary iodine. Estimated daily iodine intake was 225.96 µg. The median UIC of general participants was 146.7 µg/L; UIC <100 µg/L (iodine insufficiency) was seen in 28.6%; UIC >300 µg/L (iodine excess) in 10.1%. Pregnant women had a median UIC of 135.9 µg/L, with UIC <150 µg/L in 55.4%. Thyroid nodules and subclinical hypothyroidism were found in 27.44% and 9.17%, respectively.ConclusionsAccording to published criteria, the current dietary iodine intake in Shanghai was generally sufficient and safe, but insufficient in pregnant women. Thyroid nodules and subclinical hypothyroidism were the commonest thyroid diseases identified.
Understanding the primary mechanisms for plant promotion under salt stress with plant growth promoting rhizobacteria (PGPR) inoculation of different salt-tolerant plant groups would be conducive to using PGPR efficiently. We conducted a meta-analysis to evaluate plant growth promotion and uncover its underlying mechanisms in salt-sensitive plants (SSP) and salt-tolerant plants (STP) with PGPR inoculation under salt stress. PGPR inoculation decreased proline, sodium ion (Na+) and malondialdehyde but increased plant biomass, nutrient acquisition (nitrogen, phosphorus, potassium ion (K+), calcium ion (Ca2+), and magnesium ion (Mg2+)), ion homeostasis (K+/Na+ ratio, Ca2+/Na+ ratio, and Mg2+/Na+ ratio), osmolytes accumulation (soluble sugar and soluble protein), antioxidants (superoxide dismutase), and photosynthesis (chlorophyll, carotenoid, and photosynthetic rate) in both SSP and STP. The effect size of total biomass positively correlated with the effect sizes of nutrient acquisition and the homeostasis of K+/Na+, and negatively correlated with the effect size of malondialdehyde in both SSP and STP. The effect size of total biomass also positively correlated with the effect sizes of carotenoid and the homeostasis in Ca2+/Na+ and Mg2+/Na+ and negatively correlated with the effect size of Na+ in SSP, but it only negatively correlated with the effect size of Ca2+ in STP. Our results suggest that the plant growth improvement depends on the nutrient acquisition enhancement in both SSP and STP, while ion homeostasis plays an important role and carotenoid may promote plant growth through protecting photosynthesis, reducing oxidative damage and promoting nutrient acquisition only in SSP after PGPR inoculation under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.