Direct Z-scheme photocatalysts have attracted extensive attention due to their strong redox ability and efficient separation of photogenerated electron-hole pairs. In this study, we constructed two types of ZnS/SnS2 heterojunctions with different stacking models of ZnS and SnS2 layers, and investigated their structures, stabilities, and electronic and optical properties. Both types of heterojunctions are stable and are direct Z-scheme photocatalysts with band gaps of 1.87 eV and 1.79 eV, respectively. Furthermore, their oxidation and reduction potentials straddle the redox potentials of water, which makes them suitable as photocatalysts for water splitting. The built-in electric field at the heterojunction interface improves the separation of photogenerated electron-hole pairs, thus enhancing their photocatalytic efficiency. In addition, ZnS/SnS2 heterojunctions have higher carrier mobilities and light absorption intensities than ZnS and SnS2 monolayers. Therefore, the ZnS/SnS2 heterojunction has a broad application prospect as a direct Z-scheme visible-light-driven photocatalyst for overall water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.