BackgroundLong noncoding RNAs (lncRNAs) are an important class of functional regulators involved in human cancers development, including gastric cancer (GC). Studying aberrantly expressed lncRNAs may provide us with new insights into the occurrence and development of gastric cancer by acting as oncogenes or tumor suppressors. In this study, we aim to examine the expression pattern of lncRNA HAGLROS in GC and its clinical significance as well as its biological role in tumor progression.MethodsBioinformatics analysis and qRT-PCR were performed to detect the relative expression of HAGLROS in GC tissues and cell lines. Gain or loss of function approaches were used to investigate the biological functions of HAGLROS. The effect of HAGLROS on proliferation was evaluated by MTT, colony formation assay and nude mouse xenograft model. Wound healing and Transwell assays were used to study the invasion and migration of GC cells. FISH, RIP, RNA-seq, Luciferase report assays, RNA pulldown and Western blot were fulfilled to measure molecular mechanisms. Results are shown as means ± S.D. and differences were tested for significance using Student’s t-test (two-tailed).ResultsWe screened out HAGLROS, whose expression was significantly increased and correlated with outcomes of GC patients by publicly available lncRNAs expression profiling and integrating analyses. Exogenous down-regulation of HAGLROS expression significantly suppressed the cell proliferation, invasion and migration. Mechanistic investigations showed that HAGLROS was a direct target of transcriptional factor STAT3. Moreover, HAGLROS knockdown decreased mTOR expression and increased autophagy-related genes ATG9A and ATG9B expression. Further investigation showed that HAGLROS regulated mTOR signals in two manners. In the one hand, HAGLROS competitively sponged miR-100-5p to increase mTOR expression by antagonizing miR-100-5p-mediated mTOR mRNA inhibition. On the other hand, HAGLROS interacted with mTORC1 components to activate mTORC1 signaling pathway which was known to be an important negative signal of autophagy. Here activation of mTORC1 signaling pathway by HAGLROS inhibited autophagy, thereby promoted excessive proliferation and maintained the malignant phenotype of GC cells.ConclusionThe present study demonstrates that HAGLROS overexpression contributes to GC development and poor prognosis and will be a target for GC therapy and further develop as a potential prognostic biomarker.Electronic supplementary materialThe online version of this article (10.1186/s12943-017-0756-y) contains supplementary material, which is available to authorized users.
Genome-wide association studies (GWASs) have identified multiple susceptibility loci for colorectal cancer, but much of heritability remains unexplained. To identify additional susceptibility loci for colorectal cancer, here we perform a GWAS in 1,023 cases and 1,306 controls and replicate the findings in seven independent samples from China, comprising 5,317 cases and 6,887 controls. We find a variant at 12p13.2 associated with colorectal cancer risk (rs2238126 in ETV6, P=2.67 × 10−10). We replicate this association in an additional 1,046 cases and 1,076 controls of European ancestry (P=0.034). The G allele of rs2238126 confers earlier age at onset of colorectal cancer (P=1.98 × 10−6) and reduces the binding affinity of transcriptional enhancer MAX. The mRNA level of ETV6 is significantly lower in colorectal tumours than in paired normal tissues. Our findings highlight the potential importance of genetic variation in ETV6 conferring susceptibility to colorectal cancer.
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide and is highly resistant to chemotherapy. Yes-associated protein (YAP) is the downstream effector of the Hippo signaling pathway, which is frequently overexpressed in many types of cancers. Amplification of the YAP gene and overexpression of YAP in HCC have previously been reported to contribute to hepatocyte malignant transformation and tumor progression. In this study, we aimed to investigate the potential role of YAP in HCC chemoresistance. Overexpression of YAP resulted in resistance against doxorubicin-induced apoptosis in HCC cell lines, whereas suppression of the endogenous YAP expression by RNA interference demonstrated the reverse effect. Western blotting revealed that, following exposure to doxorubicin, YAP-overexpressing cells exhibited decreased cleaved PARP, increased phosphorylation of Akt and ERK1/2, and elevated Bcl-xL expression in comparison to the vector control. Inhibition of YAP expression sensitized HCC cells to doxorubicin, by exhibiting increased cleaved PARP, decreased levels of phosphorylated Akt, phosphorylated ERK1/2 and Bcl-xL expression. In addition, pretreatment with the MEK1/2 inhibitor U0126 but not the PI3-K inhibitor LY294002 significantly enhanced doxorubicin-induced apoptosis and decreased Bcl-xL expression in YAP-overexpressing HCC cells. Our data provide evidence that overexpression of YAP plays an important role in conferring doxorubicin resistance to HCC, which is at least partially mediated by YAP-induced activation of the MAP kinase pathway. Targeting YAP may be a promising adjunct for overcoming doxorubicin resistance in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.