FK506-binding protein 52 (FKBP52), which binds FK506 and possesses peptidylprolyl isomerase activity, is an important immunophilin involved in the heterocomplex of steroid receptors with heat-shock protein 90. Here we report the crystal structures of two overlapped fragments [N(1-260) and C(145-459)] of FKBP52 and the complex with a C-terminal pentapeptide from heat-shock protein 90. Based on the structures of these two overlapped fragments, the complete putative structure of FKBP52 can be defined. The structure of FKBP52 is composed of two consecutive FKBP domains, a tetratricopeptide repeat domain and a short helical domain beyond the final tetratricopeptide repeat motif. Key structural differences between FKBP52 and FKBP51, including the relative orientations of the four domains and some important residue substitutions, could account for the differential functions of FKBPs.
HIV patients on combination oral drug therapy experience insufficient drug levels in lymph nodes, which is linked to viral persistence. Following success in enhancing lymph node drug levels and extending plasma residence time of indinavir formulated in lipid nanoparticles, we developed multidrug anti-HIV lipid nanoparticles (anti-HIV LNPs) containing lopinavir (LPV), ritonavir (RTV), and tenofovir (PMPA). These anti-HIV LNPs were prepared, characterized, scaled up, and evaluated in primates with a focus on plasma time course and intracellular drug exposure in blood and lymph nodes. Four macaques were subcutaneously administered anti-HIV LNPs and free drug suspension in a crossover study. The time course of the plasma drug concentration as well as intracellular drug concentrations in blood and inguinal lymph nodes were analyzed to compare the effects of LNP formulation. Anti-HIV LNPs incorporated LPV and RTV with high efficiency and entrapped a reproducible fraction of hydrophilic PMPA. In primates, anti-HIV LNPs produced over 50-fold higher intracellular concentrations of LPV and RTV in lymph nodes compared to free drug. Plasma and intracellular drug levels in blood were enhanced and sustained up to 7 days, beyond that achievable by their free drug counterpart. Thus, multiple antiretroviral agents can be simultaneously incorporated into anti-HIV lipid nanoparticles to enhance intracellular drug concentrations in blood and lymph nodes, where viral replication persists. As these anti-HIV lipid nanoparticles also prolonged plasma drug exposure, they hold promise as a long-acting dosage form for HIV patients in addressing residual virus in cells and tissue.
Insufficient HIV drug levels in lymph nodes have been linked to viral persistence. To overcome lymphatic drug insufficiency, we developed and evaluated in primates a lipid-drug nanoparticle containing lopinavir, ritonavir, and tenofovir. These nanoparticles produced over 50-fold higher intracellular lopinavir, ritonavir and tenofovir concentrations in lymph nodes compared to free drug. Plasma and intracellular drug levels in blood were enhanced and sustained for 7 days after a single subcutaneous dose, exceeding that achievable with current oral therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.