Distillation columns with side reactors (SRCs) can be effectively employed to improve selectivity by manipulating the composition profiles of reactants and products inside the reaction zone. However, for the complex interaction between reaction and separation, it is difficult to simulate and optimize a SRC process. An independent reaction amount is introduced in simulating the SRC process to decouple the reaction kinetics from the mathematic models. Based on the concept of independent reaction amount, a systematic design approach, employing the Powell method, is developed to seek the internal synergistic effects between reaction and separation. The proposed optimum design methodology is demonstrated in a case study of benzyl chloride production. The effects of the design parameters, such as the number of separation stages, the stages between each reactor and the number of reactors on the process performance, are well-investigated. In addition, the effect of vapor boilup rate on the reaction capability is studied. Results demonstrate that, for the given vapor boilup rate, insufficient separation leads to a poor system performance, while excessive stages or reactors will not be beneficial toward improving reaction capability. Besides, by increasing the vapor boilup rate, the system performance can be improved obviously. The optimum configuration and the optimum match between separation and reaction can be achieved through the design approach.
In this article, the distributed tracking control problem is studied for the formation flight systems of unmanned aerial vehicles (UAVs) in presence of input constraints and actuator faults. Different from the traditional approximation technique, such as radial basis function neural networks and fuzzy logic systems, the novel broad learning system approximation technique is introduced in this study to identify the unknown lumped disturbances including external disturbances, input constraints and additive actuator faults. Combining dynamic surface control technique with the fractional order sliding mode control, a distributed fault tolerant tracking control strategy is developed for the formation flight systems of UAVs. Besides, the adverse effect of multiplicative actuator faults is compensated by the Nussbaum function, such that the satisfactory cooperative tracking control performance of the formation flight systems is obtained. Finally, a simulation experiment is given to demonstrate the superiority of the proposed control scheme compared with other existing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.