According to the latest research, lncRNAs (long non-coding RNAs) play a broad and important role in various biological processes by interacting with proteins. However, identifying whether proteins interact with a specific lncRNA through biological experimental methods is difficult, costly, and time-consuming. Thus, many bioinformatics computational methods have been proposed to predict lncRNA-protein interactions. In this paper, we proposed a novel approach called Long non-coding RNA-Protein Interaction Prediction based on Improved Bipartite Network Recommender Algorithm (LPI-IBNRA). In the proposed method, we implemented a two-round resource allocation and eliminated the second-order correlations appropriately on the bipartite network. Experimental results illustrate that LPI-IBNRA outperforms five previous methods, with the AUC values of 0.8932 in leave-one-out cross validation (LOOCV) and 0.8819 ± 0.0052 in 10-fold cross validation, respectively. In addition, case studies on four lncRNAs were carried out to show the predictive power of LPI-IBNRA.
Background Recently, numerous biological experiments have indicated that microRNAs (miRNAs) play critical roles in exploring the pathogenesis of various human diseases. Since traditional experimental methods for miRNA-disease associations detection are costly and time-consuming, it becomes urgent to design efficient and robust computational techniques for identifying undiscovered interactions. Methods In this paper, we proposed a computation framework named weighted bipartite network projection for miRNA-disease association prediction (WBNPMD). In this method, transfer weights were constructed by combining the known miRNA and disease similarities, and the initial information was properly configured. Then the two-step bipartite network algorithm was implemented to infer potential miRNA-disease associations. Results The proposed WBNPMD was applied to the known miRNA-disease association data, and leave-one-out cross-validation (LOOCV) and fivefold cross-validation were implemented to evaluate the performance of WBNPMD. As a result, our method achieved the AUCs of 0.9321 and $$0.9173 \pm 0.0005$$ 0.9173 ± 0.0005 in LOOCV and fivefold cross-validation, and outperformed other four state-of-the-art methods. We also carried out two kinds of case studies on prostate neoplasm, colorectal neoplasm, and lung neoplasm, and most of the top 50 predicted miRNAs were confirmed to have an association with the corresponding diseases based on dbDeMC, miR2Disease, and HMDD V3.0 databases. Conclusions The experimental results demonstrate that WBNPMD can accurately infer potential miRNA-disease associations. We anticipated that the proposed WBNPMD could serve as a powerful tool for potential miRNA-disease associations excavation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.