Despite promising in vitro evidence for effective glioblastoma treatment, most drugs are hindered from entering the central nervous system because of the presence of the blood-brain barrier (BBB). Thus, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle. Extracellular vesicles (EVs), cell-derived membrane-encapsulated structures with diameters ranging from 50 to 1000 nm, have been explored as the drug delivery system to deliver their cargo to the brain tissue. Moreover, tumor targeting and selective drug delivery has been facilitated by engineering their parent cells to secrete modified EVs. However, the method suffers from many shortcomings including poor repeatability and complex and time-consuming operations. In this context, we present an easy-to-adapt and highly versatile methodology to modify EVs with an engineered peptide capable of recognition and eradication of glioma. On the basis of molecular recognition between phospholipids on EV lipid bilayer membranes and ApoA-I mimetic peptides, we have developed methotrexate (MTX)-loaded EVs functionalized with therapeutic [Lys-Leu-Ala (KLA)] and targeted [low-density lipoprotein (LDL)] peptides. In vitro experiments demonstrated that EVs decorated with LDL or KLA-LDL could obviously ameliorate their uptake by human primary glioma cell line U87 and permeation into three-dimensional glioma spheroids in contrast to blank EVs, and consequently, the treatment outcome of the payload is improved. Both ex vivo and in vivo imaging experiments revealed that peptide LDL could obviously promote EV extravasation across the BBB and distribution in the glioma site. Furthermore, compared with the mice administrated with MTX and MTX@EVs, MTX@EVs-KLA-LDL-treated mice showed the longest median survival period. In conclusion, functionalizing with the peptide onto EV surfaces may provide a substantial advancement in the application of EVs for selective target binding as well as therapeutic effects for brain tumor treatment.
The angiotensin II type I receptor (AGTR1) has a strong influence on tumor growth, angiogenesis, inflammation and immunity. However, the role of AGTR1 on lymph node metastasis (LNM) in breast cancer, which correlates with tumor progression and patient survival, has not been examined. AGTR1 was highly expressed in lymph node-positive tumor tissues, which was confirmed by the Oncomine database. Next, inhibition of AGTR1 reduced tumor growth and LNM in orthotopic xenografts by bioluminescence imaging (BLI). Losartan, an AGTR1-specific inhibitor, decreased the chemokine pair CXCR4/SDF-1α levels
in
vivo
and inhibited AGTR1-induced cell migration and invasion
in
vitro
. Finally, the molecular mechanism of AGTR1-induced cell migration and LNM was assessed by knocking down AGTR1 in normal cells or CXCR4 in AGTR1
high
cells. AGTR1-silenced cells treated with losartan showed lower CXCR4 expression. AGTR1 overexpression caused the upregulation of FAK/RhoA signaling molecules, while knocking down CXCR4 in AGTR1
high
cells downregulated these molecules. Collectively, AGTR1 promotes LNM by increasing the chemokine pair CXCR4/SDF-1α and tumor cell migration and invasion. The potential mechanism of AGTR1-mediated cell movement relies on activating the FAK/RhoA pathway. Our study indicated that inhibiting AGTR1 may be a potential therapeutic target for LNM in early-stage breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.