Summary In lower eukaryotes, Sir2 serves as a histone deacetylase and is implicated in chromatin silencing, longevity and genome stability. Here we mutated the SIRT1 gene, a homolog of yeast Sir2, in mice to study its function. We showed that a majority of SIRT1-null embryos died between E9.5–E14.5, displaying altered histone modification, impaired DNA damage response, and reduced ability to repair DNA damage. We demonstrated that SIRT1+/−;p53+/− mice developed tumors in multiple tissues, whereas activation of SIRT1 by resveratrol treatment reduced tumorigenesis. Finally, we showed that many human cancers exhibited reduced level of SIRT1 than their normal controls. Thus, SIRT1 acts as a tumor suppressor through its role in DNA damage response, genome integrity, and tumor suppression. Significance SIRT1 has diverse roles in various biological processes, including caloric restriction that causes changes in glucose metabolism and lifespan. The role of SIRT1 in cancer is currently under debate due to some recent different findings. It is known that calorie restriction, which activates SIRT1, extends lifespan and inhibits tumorigenesis. On the other hand, SIRT1 deacetylates p53 to decrease its activity. It was therefore hypothesized increased SIRT1 activity, although it extends lifespan, may elevate cancer risk. Here we demonstrate SIRT1 plays an important role in DNA damage response and genome integrity by maintaining proper chromatin structure and DNA damage repair foci formation. We further show that SIRT1 serves as a tumor suppressor in mice and in some types of human cancers.
Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-loxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis.
Under various conditions mammals have the ability to maintain serum glucose concentration within a narrow range. SIRT1 plays an important role in regulating gluconeogenesis and fat metabolism; however, the underlying mechanisms remain elusive. Here we show that SIRT1 forms a complex with FOXO3a and NRF1 on the SIRT6 promoter and positively regulates expression of SIRT6, which in turn negatively regulates glycolysis, triglyceride synthesis and fat metabolism by deacetylating histone H3 lysine 9 in the promoter of many genes involved in these processes. Liver specific deletion of SIRT6 in mice causes profound alterations in gene expression, leading increased glycolysis, triglyceride synthesis, reduced β-oxidation, and fatty liver formation. Human fatty liver samples exhibited significantly lower levels of SIRT6 than normal controls. Thus, SIRT6 plays a critical role in fat metabolism, and may serve as a novel therapeutic target for treating fatty liver disease, the most common cause of liver dysfunction in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.