Powder metallurgy (PM) is a versatile process to manufacture nearly net-shaped metallic materials in industry. In this study, the PM process was used to fabricate two Fe-based laminated metal composites (LMCs), Fe-4Ni-3Cr-0.5Mo-0.5C/Fe and 410/304L. The results showed that after sintering, the LMCs were free of interfacial cracks and distortion, indicating that the PM process is a feasible means for producing these LMCs. In the Fe-4Ni-3Cr-0.5Mo-0.5C/Fe LMC, the diffusion of C resulted in the generation of a continuous pearlite layer between the Fe-4Ni-3Cr-0.5Mo-0.5C and Fe layers and a ferrite/pearlite mixture in the Fe layer. In the 410/304L LMC, the difference in the chemical potentials of C between the 304L and 410 layers led to the uphill diffusion of C from the 410 layer to the 304L layer. A continuous ferrite layer was thus formed near the interface of the 410 layer. Furthermore, a martensite layer of about 50 μm thickness was generated at the interface due to the high Cr and Ni content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.