This paper describes the design, fabrication, and testing of an integrated packaged sensor that is composed of a micro resonant accelerometer and a temperature sensor. The resonant accelerometer with differential configuration consists of double quartz resonators and a silicon substrate. When acceleration is applied along the sensing axis, the inertial force induced by the proof mass will transfer force to the resonators, which causes an opposite frequency shift of the dual quartz resonators. The loaded acceleration can be measured through detecting the differential frequency shift. The symmetric differential configuration response to spurious effects of thermal loading and inelastic effect causing prestress in the resonators is similar, which can be reduced by detecting the differential frequency, effectively. However, during the manufacture and packaging process, the otherness of residual stress in two quartz resonators results in that the response of resonators to temperature variation is not strictly the same. In other words, this temperature drift cannot be eliminated by the structure design. Thus, a temperature sensor and an accelerometer were packaged in a shell together. These novel integrated sensors can measure acceleration and temperature simultaneously. With the testing temperature data, a novel temperature compensation that is a combination of the variable coefficient regression and least squares support vector machine is used for improving the performance of the accelerometer. By means of this compensation and field programmable gate array, a real-time and online compensation is achieved. The tumble testing results indicate that the sensitivity of the accelerometer is ∼16.97 Hz/g. With the temperature compensation, the output drift of the scale factor is improved by 0.605 Hz/g in the full temperature range, which is from 0.072 Hz/g to 0.015 Hz/g. The drift of zero bias is improved from 345 mg to 1.9 mg.
This paper presents a SOI piezoresistive pressure sensor with the crossbeam membrane. The roots of the crossbeam were widened, which solved the problem of the poor dynamic performance of small-range pressure sensors working at a high temperature of 200 °C. A theoretical model was established to optimize the proposed structure, which combined the finite element and the curve fitting. Using the theoretical model, the structural dimensions were optimized to obtain the optimal sensitivity. During optimization, the sensor nonlinearity was also taken into consideration. The sensor chip was fabricated by MEMS bulk-micromachining technology, and Ti/Pt/Au metal leads were prepared to improve the sensor ability of high-temperature resistance over a long time. The sensor chip was packaged and tested, and the experimental results show the sensor achieved an accuracy of 0.241% FS, nonlinearity of 0.180% FS, hysteresis of 0.086% FS and repeatability of 0.137% FS at the high temperature. Given the good reliability and performance at the high temperature, the proposed sensor provides a suitable alternative for the measurement of pressure at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.