Transition metal Fe, Co, Ni and Cu doped strontium titanate‐rich SrTiO3@TiO2 (STO@T) materials were prepared by hydrothermal method. The prepared doped materials exhibit better photocatalytic CO2 reduction to CH4 ability under visible light conditions. Among them, Fe‐doped and undoped SrTiO3@TiO2 under visible light conditions CO2 reduction products only CO, while M‐STO@T (M=Co, Ni, Cu) samples converted CO2 to CH4. The average methane yield of Ni‐doped STO@T samples are as high as 73.85 μmol g−1 h−1. The production of methane is mainly due to the increase in the response of the doped samples to visible light. And the increase in the separation rate of photogenerated electrons and holes and the efficiency of electron transport caused by the generation of impurity levels. The impurity level caused by Ti3+ plays an important role in the production of methane by CO2 visible light reduction. Ni doping effectively improves the photocatalytic performance of STO@T and CO2 reduction mechanism were explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.