Immunotherapy with immune checkpoint inhibitors (ICIs) for solid tumors had significantly improved overall survival. This type of therapy is still not available for acute myeloid leukemia (AML). One major issue is the lack of knowledge for the expression patterns of immune checkpoints (IC) in AML. In this study, we first explored the prognostic value of ICs for AML patients by analyzing RNA-seq and mutation data from 176 AML patients from the Cancer Genome Atlas (TCGA) database. We further validated the results of the database analysis by analyzing bone marrow (BM) samples from 62 patients with de novo AML. Both TCGA data and validation results indicated that high expression of PD-1, PD-L1, and PD-L2 was associated with poor overall survival (OS) in AML patients. In addition, increased co-expression of PD-1/CTLA-4 or PD-L2/CTLA-4 correlated with poor OS in AML patients (3-year OS: TGCA data 30% vs 0% and 20% vs 0%, validation group 57% vs 31% and 57% vs 33%, respectively) (P < 0.05).
Background: Small cell lung cancer (SCLC) is the most malignant type of lung cancer characterized by rapid progression, early metastasis and recurrence. In recent years, circulating tumor cells (CTCs) were found to play an important role in tumor invasion, metastasis, recurrence and prognosis. Methods: CTCs were detected in 138 patients with newly diagnosed SCLC from January 2012 to December 2018. Nomogram prediction models were constructed based on prognostic factors screened by multivariate Cox regression analysis and the risk stratification of SCLC patients were performed on basis of nomogram points. A total of 108 patients from January 2012 to December 2016 were assigned to a training group, and 30 patients from January 2017 to December 2018 were included into the validation group for nomogram analysis. This study was approved by ethics committee of Guangzhou First People's Hospital and all subjects provided informed consent. Results: The number of CTCs was associated with age, lymph node metastasis (N), distant metastasis (M), TNM staging, and NSE. The high number of CTC predicted adverse prognosis, and the AUC of time-dependent ROC curve was all high than 0.5. In the training group, after multivariate COX regression screening, the factors in the median survival time (MST) and overall survival (OS) nomogram prediction models were age, TNM, CTC, NSE and treatment mode. The C-index of the nomograms in internal validation for MST and OS was 0.813 and in external validation for MST and OS were 0.885. The AUC of ROC curves for nomogram were high than 0.5. Finally, risk stratification could be effectively performed on the basis of nomogram points. Conclusions: CTC can be served as a predictive and prognostic factor for SCLC, and the nomogram models constructed by CTC and multiple clinical parameters can comprehensively predict the prognosis of SCLC patients and perform risk stratification.
Background Tumor mutation burden (TMB) as estimated by cancer gene panels (CGPs) has been confirmed to be associated with prognosis and is effective in predicting clinical benefit from immune checkpoint blockade (ICB) in solid tumors. However, whether the TMB calculated by CGPs is associated with overall survival (OS) for patients with diffuse large B-cell lymphoma (DLBCL) is worth exploring. Methods The prognostic value of panel-TMB, calculated by a panel of 69 genes (GP69), for 87 DLBCL patients in our clinical center (GDPH dataset) was explored. The results were further validated using 37 DLBCL patients from the Cancer Genome Atlas (TCGA) database (TCGA dataset). Results Spearman correlation analysis suggested that panel-TMB is positively correlated with the TMB calculated by whole-exome sequencing (wTMB) in the TCGA dataset (R = 0.76, P < 0.0001). Both GDPH and TCGA results demonstrated that higher panel-TMB is significantly associated with a poor OS for DLBCL patients (P < 0.05) where a panel of 13 genes was associated with poor OS, and another panel of 26 genes was correlated with a favorable OS for DLBCL patients. Further subgroup analysis indicated that higher panel-TMB had shorter OS in DLBCL patients with younger than 60 years, elevated LDH, greater than one extranodal involvement, stage III/IV, an IPI score of 3–5, or HBsAg, anti-HBc, or HBV-DNA negativity (P < 0.05). Interestingly, the nomogram model constructed by panel-TMB, stage, and IPI could individually and visually predict the 1-, 2- and 3-year OS rates of DLBCL patients. Conclusions We established GP69 for the evaluation of OS for Chinese DLBCL patients. panel-TMB might be a potential predictor for prognostic stratification of DLBCL patients.
Background: Long non-coding RNAs (lncRNAs), which are over 200 nt in length, have a key role in tumorigenesis and disease progression. To explore the role of prognostic lncRNAs in adult acute myeloid leukemia (AML), the expression profiles of lncRNAs and mRNAs in AML were analyzed.Methods: The RNAseq data of 167 adult AML patients and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA), which is a publicly available database. The RPKM values of the RNAseq data were subjected to weighted gene co-expression network analysis (WGCNA) in modularization.Results: We identified survival specific lncRNAs and mRNAs, which were divided into modules by coexpression analysis. The lncRNAs were mainly annotated into “Fc gamma R-mediated phagocytosis”. The hub lncRNA and co-expressed mRNAs were further selected for analysis of risk stratification. LncRNA-LOC646762 may contribute to AML through the "endocytosis" signaling pathway. Finally, the expression levels of LOC646762 and co-expressed CCND3, CBR1, C10orf54, CD97 and BLOC1S1 in the adult AML patients and healthy volunteers were validated by qRT-PCR, and then their roles in prognosis and risk stratification were identified.Conclusions: Prognostic lncRNA-LOC646762, which may contribute to AML through the "endocytosis" signaling pathway, may act as a biomarker for predicting the survival of adult AML patients, as well as for risk stratification.
Sustained expression of programmed cell death receptor-1 (PD-1) is correlated with the exhaustion of T cells, and blockade of the PD-1 pathway is an effective immunotherapeutic strategy for treating various cancers. However, response rates are limited, and many patients do not achieve durable responses. Thus, it is important to seek additional strategies that can improve anticancer immunity. Here, we report that the bromodomain and extraterminal domain (BET) inhibitor JQ1 inhibits PD-1 expression in Jurkat T cells, primary T cells, and T-cell exhaustion models. Furthermore, JQ1 dramatically impaired the expression of PD-1 and T-cell immunoglobulin mucin-domain-containing-3 (Tim-3) and promoted the secretion of cytokines in T cells from patients with acute myeloid leukemia (AML). In line with that, BET inhibitor-treated CD19-CAR T and CD123-CAR T cells have enhanced anti-leukemia potency and resistant to exhaustion. Mechanistically, BRD4 binds to the NFAT2 and PDCD1 (encoding PD-1) promoters, and NFAT2 binds to the PDCD1 and HAVCR2 (encoding Tim-3) promoters. JQ1-treated T cells showed downregulated NFAT2, PD-1, and Tim-3 expression. In addition, BET inhibitor suppressed programmed death-ligand 1 (PD-L1) expression and cell growth in AML cell lines and in primary AML cells. We also demonstrated that JQ1 treatment led to inhibition of leukemia progression, reduced T-cell PD-1/Tim-3 expression, and prolonged survival in MLL-AF9 AML mouse model and Nalm6 (B-cell acute lymphoblastic leukemia cell)-bearing mouse leukemia model. Taken together, BET inhibition improved anti-leukemia immunity by regulating PD-1/PD-L1 expression, and also directly suppressed AML cells, which provides novel insights on the multiple effects of BET inhibition for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.