Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates. Here, we demonstrate a 3D biomimetic SERS substrate prepared by deposition of silver nanoparticles (Ag NPs) on the bioscaffold arrays of cicada wings using laser molecular beam epitaxy. This deposition method can offer a large number of nanoparticles with average diameter of $10 nm and nanogaps of sub-10 nm on the surface of chitin nanopillars to generate a high density of hotspots. The prepared 3D Ag/cicada SERS substrate shows a limit of detection (LOD) for Rhodamine 6G as low as 10 À7 M, high enhancement factor of 1.09 Â 10 5 , and excellent signal uniformity of 6.8%. Moreover, the molecular fingerprints of melamine in infant formula can be directly extracted with an LOD as low as 10 mg L À1 , without the need for functional modification. The prepared SERS-active substrate, due to its low cost, high-throughput, and good detection performance, can be widely used in applications such as food safety and environmental monitoring.
With the development of flexible surface-enhanced Raman spectroscopy (SERS) substrates that can realize rapid in situ detection, the SERS technique accompanied by miniaturized Raman spectrometers holds great promise for point-of-care testing (POCT). For an in situ detection strategy, constructing high-performance flexible and transparent SERS substrates through a facile and cost-effective fabrication method is critically important. Herein, we present a simple method for fabricating a large-area flexible and transparent SERS substrate consisting of a silver-nanoparticle-grafted wrinkled polydimethylsiloxane (Ag NPs@W-PDMS) film, using a surface-wrinkling technique and magnetron sputtering technology. By characterizing rhodamine 6G as a probe molecule with a portable Raman spectrometer, the flexible SERS substrate shows a low detection limit (10–7 M), a high enhancement factor (6.11 × 106), and excellent spot–spot and batch–batch reproducibilities (9.0% and 4.2%, respectively). Moreover, the Ag NPs@W-PDMS substrate maintains high SERS activity under bending and twisting mechanical deformations of over 100 cycles, as well as storage in air for 30 days. To evaluate its practical feasibility, in situ detection of malachite green on apple and tomato peels is performed with a detection limit of 10–6 M. In addition, for point-of-care analysis, we develop a wireless transmission system to transmit the collected SERS spectral data to a computer in real time for signal processing and analysis. Therefore, the proposed Ag NPs@W-PDMS SERS substrate fabricated through a simple and mass-producible method, combined with the utilization of a portable Raman spectrometer and wireless communication, offers a promising opportunity to extend the SERS technique from the laboratory to POCT applications.
The electron momentum density and sp 2 /sp 3 ratio of carbon materials in the thermal transformation of detonation nanodiamonds (ND) into carbon nano-onions are systematically studied by electron energy-loss spectroscopy (EELS). Electron energy-loss near-edge structures of the carbon K-ionization in the electron energy-loss spectroscopy are measured to determine the sp 2 content of the ND-derived samples. We use the method developed by Titantah and Lamoen, which is based on the ability to isolate the π * spectrum and has been shown to give reliable and accurate results. Compton profiles (CPs) of the ND-derived carbon materials are obtained by performing EELS on the electron Compton scattering region. The amplitude of the CPs at zero momentum increases with increasing annealing temperature above 500 °C. The dramatic changes occur in the temperature range of 900–1300 °C, which indicates that the graphitization process mainly occurs in this annealing temperature region. Our results complement the previous work on the thermal transformation of ND-derived carbon onions and provide deeper insight into the evolution of the electronic properties in the graphitization process.
A multipoint gas sensing scheme based on photoacoustic spectroscopy was proposed. Multiple photoacoustic spectroscopy (PAS) gas cells (resonant frequency f=5.0 kHz) were connected in series for the multipoint gas sensing with wavelength modulation technique. The PAS signal was excited by modulating the tunable distributed feedback laser diode wavelength at f/2 using a changing driving current. The gas concentration of each gas cell was obtained by the PAS signal, which was demodulated by the lock-in amplifier. A multipoint PAS experiment to detect the water vapor at 1368.597 nm was implemented to verify the scheme we presented. With the three PAS gas cells, the linear response to the water vapor concentration of our sensors achieved 0.9978, 0.99591, and 0.99617, and their minimum detection limits were 479, 662, and 630 ppb, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.