The existing coal self-heating inhibitors usually have the shortcomings of short effective time and low inhibition effect. This study proposed a kind of controlled-release inhibitor and analyzed their differences in inhibition effects compared with existing inhibitors on coal self-heating. The controlled-release inhibitor is made from the synthesis of halogen inhibitors, catechin, copolymer, solvent and surfactant. The controlled-release inhibitor will not break down quickly until coal temperature reaches a value about 70°C and can continually inhibit the process of coal self-heating after a longer time. The crossing point temperature, propensity to spontaneous combustion and CO generation of coal samples processed by different inhibition methods were tested separately based on an oxidation dynamic method. The results show that the controlled-release inhibitor can inhibit the coal self-heating more effectively for a longer time than existing halogen inhibitors. This study provides a new method for more efficient prevention of coal spontaneous combustion.
Hydroxyl groups are one of the key factors for the development of coal self-heating, although their detailed reaction pathways are still unclear. This study investigated the reaction pathways in coal self-heating by the method of quantum chemistry calculation. The Ar-CH 2 -CH(CH 3 )-OH was selected as a typical structure unit for the calculation. The results indicate that the hydrogen atoms in hydroxyl groups and R 3 -CH are the active sites. For the hydrogen atoms in hydroxyl groups, they are directly abstracted by oxygen. For hydrogen atoms in R 3 -CH, they are abstracted by oxygen at first and generate peroxy-hydroxyl free radicals, which abstract the hydrogen atoms in hydroxyl groups later. The reaction of R 3 -CH contains three elementary reactions, i.e., the hydrogen abstraction of R 3 -CH by oxygen, the conjugation reaction between the R 3 C▪ and oxygen atom, and the hydrogen abstraction of -OH by hydroxyl free radicals. Then, the microstructure parameters, IRC pathways, and reaction dynamic parameters were respectively analyzed for the four reactions. For the hydrogen abstraction of -OH by oxygen, the enthalpy change and activation energy are 137.63 and 334.44 kJ/mol, respectively, which will occur at medium temperatures and the corresponding heat effect is great. For the reaction of R 3 -CH, the enthalpy change and the activation energy are −3.45 and 55.79 kJ/mol, respectively, which will occur at low temperatures while the corresponding heat influence is weak. They both affect heat accumulation and provide new active centers for enhancing the coal self-heating process. The results would be helpful for further understanding of the coal self-heating mechanism.Résumé : Les groupes hydroxyle constituent l'un des principaux facteurs à l'origine du chauffage spontané du charbon. Toutefois, les mécanismes réactionnels précis de ce phénomène sont encore mal compris. La présente étude s'est penchée sur les mécanismes de réaction en cause dans le chauffage spontané du charbon en utilisant la méthode de calcul quantique de modélisation moléculaire. Nous avons choisi le Ar−CH 2 −CH(CH 3 )−OH comme unité structurale de référence pour le calcul. Les résultats indiquent que les atomes d'hydrogène des groupes hydroxyle et de la position R 3 −CH sont les centres réactifs. Les atomes d'hydrogène des groupes hydroxyle sont directement arrachés par l'oxygène. Quant aux atomes d'hydrogène de la position R 3 −CH, ils sont d'abord arrachés par l'oxygène et génèrent ensuite des radicaux libres peroxohydroxyle, qui arrachent à leur tour des atomes d'hydrogène des groupes hydroxyle. La réaction du R 3 −CH comprend trois réactions élémentaires : l'arrachement par l'oxygène de l'atome d'hydrogène de la position R 3 −CH, la réaction de conjugaison entre le radical R 3 C▪ et l'atome d'oxygène et l'arrachement de l'atome d'hydrogène du groupe -OH par les radicaux libres hydroxyle. Ensuite, nous avons analysé les paramètres microstructuraux, les voies de la coordonnée intrinsèque de réaction et les paramètres de dynamique de réaction ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.