BackgroundT-helper (Th) 22 is involved in the pathogenesis of inflammatory diseases. The roles of Th22 cells in the pathophysiological of ankylosing spondylitis (AS) and rheumatoid arthritis (RA) remain unsettled. So we examined the frequencies of Th22 cells, Th17 cells and Th1 cells in peripheral blood (PB) from patients with AS and patients with RA compared with both healthy controls as well as patients with osteoarthritis.Design and MethodsWe studied 32 AS patients, 20 RA patients, 10 OA patients and 20 healthy controls. The expression of IL-22, IL-17 and IFN-γ were examined in AS, RA, OA patients and healthy controls by flow cytometry. Plasma IL-22 and IL-17 levels were examined by enzyme-linked immunosorbent assay.ResultsTh22 cells, Th17 cells and interleukin-22 were significantly elevated in AS and RA patients compared with OA patients and healthy controls. Moreover, Th22 cells showed positive correlation with Th17 cells as well as interleukin-22 in AS and RA patients. However, positive correlation between IL-22 and Th17 cells was only found in AS patients not in RA patients. In addition, the percentages of both Th22 cells and Th17 cells correlated positively with disease activity only in RA patients not in AS patients.ConclusionsThe frequencies of both Th22 cells and Th17 cells were elevated in PB from patients with AS and patients with RA. These findings suggest that Th22 cells and Th17 cells may be implicated in the pathogenesis of AS and RA, and Th22 cells and Th17 cells may be reasonable cellular targets for therapeutic intervention.
Aqueous extract of Trametes robiniophila murr (Huaier) has been commonly used in China for cancer complementary therapy in recent years; however, the mechanisms of its anticancer effects are largely unknown. In the present study, we aim to investigate its inhibitory effect on both MCF-7 and MDA-MB-231 cells, and explore the possible mechanisms of its anticancer effect. Cell viability and motility were measured by MTT and invasive assays, migration and scratch assays in vitro, respectively. The distribution of cell cycle, PI-Annexin-V staining and Rhodamine 123 assay were analyzed by flow cytometry, and western blot were used to test the apoptotic pathways. We found that Huaier extract could strongly inhibit cell viability of MCF-7 and MDA-MB-231 cells in a time-and dose-dependent manner; however, MDA-MB-231 cells showed more susceptibility to the treatment. Furthermore, cell invasiveness and migration were also suppressed with exposure to Huaier extract. We also indicated that Huaier could induce G0/ G1 cell-cycle arrest, p53 accumulation and activation selectively in MCF-7 cells. Inspiringly, the PI-Annexin-V staining assay and western blot analysis confirmed cell apoptosis executed by caspase-3. Decreased mitochondrial membrane potential by Rhodamine 123 assay and down-regulation of Bcl-2 and up-regulation of BCL2-associated X protein (BAX) indicated that Huaier induced apoptosis through the mitochondrial pathway. Caspase activation during Huaier-induced apoptosis was confirmed by pan-caspase inhibitor, Z-VAD-fmk. As expected, the inhibitor decreased Huaier-induced apoptosis in both cell lines. Based on our findings, Huaier can induce cell apoptosis in both ER-positive and ER-negative breast cancer cell lines and is an effective complementary agent for breast cancer treatment. (Cancer Sci 2010; 101: 2375-2383 W orldwide, it is estimated that more than 1 million women are diagnosed with breast cancer every year, and it accounts for approximately 410 000 deaths per year.( 1) Breast cancer is already the leading cause of cancer in southeast Asian women, and is second only to gastric cancer in east Asian women.(2) In some areas of China, the incidence of breast cancer is increasing by 5% per year, greater than that of the worldwide rate.(3) However, compared with other carcinomas, breast cancer has a better prognosis and over 5 million successful survivors comprise nearly 23% of the total cancer survivors in the USA. Although the 5-year survival is estimated at 98% and 94% for stage 1 and 2 localized disease, (4) respectively, the therapeutic options for advanced-stage breast cancers are still fairly limited.(5)
We performed a genome-wide association study with 706 individuals with leprosy and 5,581 control individuals and replicated the top 24 SNPs in three independent replication samples, including a total of 3,301 individuals with leprosy and 5,299 control individuals from China. Two loci not previously associated with the disease were identified with genome-wide significance: rs2275606 (combined P = 3.94 × 10(-14), OR = 1.30) on 6q24.3 and rs3762318 (combined P = 3.27 × 10(-11), OR = 0.69) on 1p31.3. These associations implicate IL23R and RAB32 as new susceptibility genes for leprosy. Furthermore, we identified evidence of interaction between the NOD2 and RIPK2 loci, which is consistent with the biological association of the proteins encoded by these genes (NOD2-RIPK2 complex) in activating the NF-κB pathway as a part of the host defense response to infection. Our findings have expanded the biological functions of IL23R by uncovering its involvement in infectious disease susceptibility and suggest a potential involvement of autophagocytosis in leprosy pathogenesis. The IL23R association supports previous observations of the marked overlap of susceptibility genes for leprosy and Crohn's disease, implying common pathogenesis mechanisms.
The treatment of ovarian cancer has traditionally been intractable, and required novel approaches to improve therapeutic efficiency. This paper reports that thio-glucose bound gold nanoparticles (Glu-GNPs) can be used as a sensitizer to enhance ovarian cancer radiotherapy. The human ovarian cancer cells, SK-OV-3, were treated by gold nanoparticles (GNPs) alone, irradiation alone, or GNPs in addition to irradiation. Cell uptake was assayed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), while cytotoxicity induced by radiotherapy was measured using both 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide and clonogenic assays. The presence of reactive oxygen species (ROS) was determined using CM-H2-DCFDA confocal microscopy and cell apoptosis was determined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry. The cells treated by Glu-GNPs resulted in an approximate 31% increase in nanoparticle uptake compared to naked GNPs (p < 0.005). Compared to the irradiation alone treatment, the intracellular uptake of Glu-GNPs resulted in increased inhibition of cell proliferation by 30.48% for 90 kVp and 26.88% for 6 MV irradiation. The interaction of x-ray radiation with GNPs induced elevated levels of ROS production, which is one of the mechanisms by which GNPs can enhance radiotherapy on ovarian cancer.
Of eight leprosy susceptibility loci identified by genome-wide association studies, five have been implicated in Crohn disease, suggesting a common genetic fingerprint between leprosy and inflammatory bowel disease (IBD). Here, we conducted a multiple-stage genetic association study of 133 IBD susceptibility loci in multiple leprosy samples (totaling 4,971 leprosy cases and 5,503 controls) from a Chinese population and discovered two associations at rs2058660 on 2q12.1 (p = 4.57 × 10(-19); odds ratio [OR] = 1.30) and rs6871626 on 5q33.3 (p = 3.95 × 10(-18); OR = 0.75), implicating IL18RAP/IL18R1 and IL12B as susceptibility genes for leprosy. Our study reveals the important role of IL12/IL18-mediated transcriptional regulation of IFN-γ production in leprosy, and together with previous findings, it demonstrates the shared genetic susceptibility between infectious and inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.