In this study, we prepared novel fluorescent carbon quantum dots/hydrogel nanocomposite material (CQDsHG) with good adsorption and stable fluorescence detection of Fe3+. The materials were subsequently characterized according to their morphological features, chemical composition, adsorption, and optical properties. The carbon quantum dots (CQDs) were prepared using a microwave-assisted hydrothermal method in no more than 15 min, and the as-prepared CQDs exhibited excellent water solubility, as well as emitted strong bright blue fluorescence with an ultrahigh quantum yield of 93.60%. The CQDs were then loaded into a hydrogel (HG) using the sol-gel method to obtain a functional CQDsHG. The CQDsHG exhibited high adsorption amounts (31.94 mg/g) and a good quenching response for Fe3+, thus, it could be used as a sensor to selectively detect Fe3+ in the linear range of 0–150 μM with a detection limit of 0.24 μM. We observed minimal difference in the fluorescence lifetimes between the CQDsHG with and without a quencher (Fe3+), with values of 5.816 ns and 5.824 ns, respectively, confirming that Fe3+ was statically quenched on CQDsHG. The results indicated that the innovative combination of CQDs and HG can improve the synergistic performance of each component for the adsorption and quantitative detection of heavy metal ions in the aqueous environment.
Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co2+ detection along with good linear correlation ranging from 20 to 150 µM and the detection limit of 0.49 µM. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.
A Cs(i)-selective potentiometric microsensor based on the glassy carbon electrode (GCE) modified with a magnetic multi-walled carbon nanotubes/cesium ion-imprinted polymer has been developed.
Fluorescence analysis technology and ion imprinting technology are combined to prepare a copper ion fluorescence sensor. Carbon quantum dots (CQDs), with a quantum yield of 79%, were synthesized by a hydrothermal process using citric acid as the carbon source. The prepared CQDs, acting as the fluorophore, were grafted onto the surface of an SBA-15 mesoporous molecular sieve by an amidation reaction. Then, the fluorescent sensor CQDs@Cu-IIP was prepared using a surface imprinting technique with the modified SBA-15 as the substrate, copper ions as a template, tetraethoxysilane as the crosslinker, and 3-aminopropyl-3-ethoxysilane as the functional monomers. The sensor showed strong fluorescence from CQDs and high selectivity due to the presence of Cu(II)-IIP. After the detection conditions were optimized, the fluorescence intensity of the sensor had good linearity with Cu(II) concentration in a linear range of 0.25–2 mg/L and 3–10 mg/L. This CQDs@Cu-IIP was applied to the determination of traces Cu(II) in real water samples and good recoveries of 99.29–105.42% were obtained. The present study provides a general strategy for fabricating materials based on CQDs for selective fluorescence detection of heavy metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.