Vanishing point (VP) provides extremely useful information related to roads in driving scenes for advanced driver assistance systems (ADAS) and autonomous vehicles. Existing VP detection methods for driving scenes still have not achieved sufficiently high accuracy and robustness to apply for real-world driving scenes. This paper proposes a robust motion-based road VP detection method to compensate for the deficiencies. For such purposes, three main processing steps often used in the existing road VP detection methods are carefully examined. Based on the analysis, stable motion detection, stationary point-based motion vector selection, and angle-based RANSAC (RANdom SAmple Consensus) voting are proposed. A ground-truth driving dataset including various objects and illuminations is used to verify the robustness and real-time capability of the proposed method. The experimental results show that the proposed method outperforms the existing motion-based and edge-based road VP detection methods for various illumination conditioned driving scenes.
: Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map.Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.
This paper proposes a new approach of abnormal vehicle detection for frontal and lateral collision warnings in nighttime driving using monocular vision. Motion information is used to estimate moving objects. An empirical threshold range is introduced to eliminate efficiently most of non-vehicle regions. Vehicle candidates are segmented by using K-means clustering. An analysis is performed carefully to consider what initial K value is optimal for vehicle region segmentation. The vehicle candidates are classified by using Support Vector Machine (SVM) classification. The aforementioned method has high ability to retain the abnormal moving vehicles. The detected abnormal vehicles consist of on-coming, overtaking, change speed, change lane, and road-side parking. These vehicles are dangerous with respect to the host vehicle. Experimental results show that the proposal approach is useful for real-time collision warning function of driver assistance system in nighttime driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.