Most previous experimental investigations of two-dimensional (2D) granular
column collapses have been conducted using three-dimensional (3D) granular
materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent
research on 2D granular column collapses by using 2D granular materials (i.e.,
aluminum rods) has revealed results that differ markedly from those reported in
the literature. We assume a 2D column with an initial height of h0 and initial
width of d0, a defined as their ratio (a =h0/d0), a final height of h , and
maximum run-out distance of d . The experimental data suggest that for the low
a regime (a <0.65) the ratio of the final height to initial height is 1.
However, for the high a regime (a >0.65), the ratio of a to (d-d0)/d0, h0/h ,
or d/d0 is expressed by power-law relations. In particular, the following
power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for
every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.65<
a< 1.5, whereas the ratio (d-d0)/d0=3.80a^0.73 holds for a>1.5. In addition,
the influence of ground contact surfaces (hard or soft beds) on the final
run-out distance and destruction zone of the granular column under true 2D
conditions is investigated.Comment: 8 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.