In the oral cavity, an open growth system, bacterial adhesion to the non‐shedding surfaces is for most bacteria the only way to survive. This adhesion occurs in 4 phases: the transport of the bacterium to the surface, the initial adhesion with a reversible and irreversible stage, the attachment by specific interactions, and finally the colonization in order to form a biofilm. Different hard surfaces are available in the oral cavity (teeth, filling materials, dental implants, or prostheses), all with different surface characteristics. In a healthy situation, a dynamic equilibrium exists on these surfaces between the forces of retention and those of removal. However, an increased bacterial accumulation often results in a shift toward disease. 2 mechanisms favour the retention of dental plaque: adhesion and stagnation. The aim of this review is to examine the influence of the surface roughness and the surface free energy in the adhesion process. Both in vitro and in vivo studies underline the importance of both variables in supragingival plaque formation. Rough surfaces will promote plaque formation and maturation, and high‐energy surfaces are known to collect more plaque, to bind the plaque more strongly and to select specific bacteria. Although both variables interact with each other, the influence of surface roughness overrules that of the surface free energy. For the subgingival environment, with more facilities for microorganisms to survive, the importance of surface characteristics dramatically decreases. However, the influence of surface roughness and surface‐free energy on supragingival plaque justifies the demand for smooth surfaces with a low surface‐free energy in order to minimise plaque formation, thereby reducing the occurrence of caries and periodontitis.
Bacterial adhesion to intra-oral, hard surfaces is firmly influenced by the surface roughness to these structures. Previous studies showed a remarkable higher subgingival bacterial load on rough surfaces when compared to smooth sites. More recently, the additional effect of a further smoothening of intra-oral hard surfaces on clinical and microbiological parameters was examined in a short-term experiment. The results indicated that a reduction in surface roughness below R(a) = 0.2 microns, the so-called "thresholds R(a)", had no further effect on the quantitative/qualitative microbiological adhesion or colonisation, neither supra- nor subgingivally. This study aims to examine the long-term effects of smoothening intra-oral hard transgingival surfaces. In 6 patients expecting an overdenture in the lower jaw, supported by endosseus titanium implants, 2 different abutments (transmucosal part of the implant): a standard machined titanium (R(a) = 0.2 microns) and one highly polished and made of a ceramic material (R(a) = 0.06 microns) were randomly installed. After 3 months of intra-oral exposure, supra- and subgingival plaque samples from both abutments were compared with each other by means of differential phase-contrast microscopy (DPCM). Clinical periodontal parameters (probing depth, gingival recession, bleeding upon probing and Periotest-value) were recorded around each abutment. After 12 months, the supra- and subgingival samples were additionally cultured in aerobic, CO2-enriched and anaerobic conditions. The same clinical parameters as at the 3-month interval were recorded after 12 months. At 3 months, spirochetes and motile organisms were only detected subgingivally around the titanium abutments. After 12 months, however, both abutment-types harboured equal proportions of spirochetes and motile organisms, both supra- and subgingivally. The microbial culturing (month 12) failed to detect large inter-abutment differences. The differences in number of colony- forming units (aerobic and anaerobic) were within one division of a logarithmic scale. The aerobic culture data showed a higher proportion of Gram-negative organisms in the subgingival flora of the rougher abutments. From the group of potentially "pathogenic" bacteria, only Prevotella intermedia and Fusobacterium nucleatum were detected for anaerobic culturing and again the inter-abutment differences were negligible. Clinically, the smoothest abutment showed a slightly higher increase in probing depth between months 3 and 12, and more bleeding on probing. The present results confirm the findings of our previous short-term study, indicating that a further reduction of the surface roughness, below a certain "threshold R(a)" (0.2 microns), has no major impact on the supra- and subgingival microbial composition.
In a standard periodontal treatment strategy with consecutive root planings (per quadrant at a one- to two-week interval), re-infection of a disinfected area might occur before completion of the treatment. This study examines, both clinically and microbiologically, whether a full-mouth disinfection within 24 hours significantly improves the outcome of periodontal treatment. Ten patients with advanced chronic periodontitis were randomly allocated to a test and a control group. The patients from the control group received scalings and root planings as well as oral hygiene instructions per quadrant at two-week intervals. Full-mouth disinfection in the test group was sought by the removal of all plaque and calculus (in two visits within 24 hours). In addition, at each of these visits, the tongue was brushed with a 1% chlorhexidine gel for one min and the mouth rinsed with a 0.2% chlorhexidine solution for two min. Furthermore, subgingival chlorhexidine (1%) irrigation was performed in all pockets. The recolonization of the pockets was retarded by oral hygiene and 0.2% chlorhexidine rinses during two weeks. The clinical parameters were recorded, and plaque samples were taken from the right upper quadrant at baseline and after one and two months. The test group patients showed a significantly higher reduction in probing depth for deep pockets at both follow-up visits (p < 0.05). At the one-month visit, differential phase-contrast microscopy revealed significantly lower proportions of spirochetes and motile rods in the test group (p = 0.01). Culturing showed that the test group harbored significantly fewer pathogenic organisms at one month (p = 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.