Well-established techniques, e.g., chromatography and capillary electrophoresis, are available for separating nanosized particles, such as proteins. However, similar techniques for separating micron-sized particles are still needed. Insulator-based electrokinetic (iEK) systems can achieve efficient microparticle separations by combining linear and nonlinear EK phenomena. Of particular interest are charge-based separations, which could be employed for separating similar microorganisms, such as bacterial cells of the same size, same genus, or same strain. Several groups have reported charge-based separations of microparticles where a zeta potential difference of at least 40 mV between the microparticles was required. The present work pushes the limit of the discriminatory capabilities of iEK systems by reporting the charged-based separation of two microparticles of the same size (5.1 μm), same shape, same substrate material, and with a small difference in particle zeta potentials of only 3.6 mV, which is less than 10% of the difference in previous studies. By building an accurate COMSOL Multiphysics model, which correctly accounts for dielectrophoresis and electrophoresis of the second kind, it was possible to identify the conditions to achieve this challenging separation. Furthermore, the COMSOL model allowed predicting particle retention times (t R,p) which were compared with experimental values (t R,e). The separations results had excellent reproducibility in terms of t R,e with variations of only 9% and 11% between repetitions. These findings demonstrate that, by following a robust protocol that involves modeling and experimental work, it is possible to discriminate between highly similar particles, with much smaller differences in electrical charge than previously reported.
This study focuses on the dependence of nonlinear electrophoretic migration of particles on the particle size and particle electrical charge. This is the first report of the experimental assessment of the mobilities of the nonlinear electrophoretic velocity of colloidal polystyrene microparticles under two distinct electric field dependences. A total of nine distinct types of polystyrene microparticles of varying size and varying electrical charge were divided into two groups to study separately the effects of particle size and the effects of particle charge. The mobilities of the nonlinear electrophoretic velocity of each particle type were determined in both the cubic and 3/2 regimes (μ EP,NL(3) and μ EP,NL (3/2) ). The results unveiled that both mobilities had similar relationships with particle size and charge. The magnitude of both μ EP,NL(3) and μ EP,NL (3/2) increased with increasing particle size and decreased with increasing magnitude of particle charge. However, the observed trends were not perfect as discussed in the Results and Discussion section but still provide valuable information. These findings will aid in the design of future size-based and charge-based separations of particles and microorganisms.
INTRODUCTION Ras Labs’ Synthetic Muscle™ will allow amputees to continue their active lives without needing to adjust the fitting of their prosthetic device(s) throughout the day. This technology promises to resolve major issues facing amputees, most notably the pain of prosthetic slippage and tissue breakdown. Synthetic Muscle™, comprising electroactive polymers (EAPs), actively expand or contract at low voltages, while offering impact resistance and pressure sensing, all in one integrated solution. The main objectives of this project is to determine the feasibility of the EAP pads incorporated into prosthetic liners or sockets and to create prototypes of these EAP based shape-morphing pad systems. In collaboration with UPI, testing of these EAP based pads located in strategic areas of the socket was initiated with customers (BK and AK) for evaluation and feedback. Characterization of Synthetic Muscle™ as dual use pressure sensors was initiated. This is a continuation Ras Labs’ dynamic prosthetic pad project, which demonstrated how the volume of the EAP can be changed from applying a low voltage and operating temperatures for use in adjustable prosthetic liners and sockets 1-8. Abstract PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32048/24462 How to cite: Rasmussen L, Rodriguez S, Bowers M, Smith D, Martino G, Rizzo L, Scheiber C, d’Almeida J, Dillis C. Adjustable Liners and Sockets for Prosthetic Devices. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL, VOLUME 1, ISSUE 2, 2018; ABSTRACT, POSTER PRESENTATION AT THE AOPA’S 101ST NATIONAL ASSEMBLY, SEPT. 26-29, VANCOUVER, CANADA, 2018. DOI: https://doi.org/10.33137/cpoj.v1i2.32048 Abstracts were Peer-reviewed by the American Orthotic Prosthetic Association (AOPA) 101st National Assembly Scientific Committee. http://www.aopanet.org/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.