Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, which are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device’s potential use in a wide variety of settings, including BFRB diagnosis and management.
Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, that are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device's potential use in a wide variety of settings, including BFRB diagnosis and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.