We employ tools from the fields of symbolic computation and satisfiability checkingnamely, computer algebra systems and SAT solvers-to study the Williamson conjecture from combinatorial design theory and increase the bounds to which Williamson matrices have been enumerated. In particular, we completely enumerate all Williamson matrices of even order up to and including 70 which gives us deeper insight into the behaviour and distribution of Williamson matrices. We find that, in contrast to the case when the order is odd, Williamson matrices of even order are quite plentiful and exist in every even order up to and including 70. As a consequence of this and a new construction for 8-Williamson matrices we construct 8-Williamson matrices in all odd orders up to and including 35. We additionally enumerate all Williamson matrices whose orders are divisible by 3 and less than 70, finding one previously unknown set of Williamson matrices of order 63.
We provide a complete enumeration of all complex Golay pairs of length up to 25, verifying that complex Golay pairs do not exist in lengths 23 and 25 but do exist in length 24. This independently verifies work done by F. Fiedler in 2013 [11] that confirms the 2002 conjecture of Craigen, Holzmann, and Kharaghani [8] that complex Golay pairs of length 23 don't exist. Our enumeration method relies on the recently proposed SAT+CAS paradigm of combining computer algebra systems with SAT solvers to take advantage of the advances made in the fields of symbolic computation and satisfiability checking. The enumeration proceeds in two stages: First, we use a fine-tuned computer program and functionality from computer algebra systems to construct a list containing all sequences which could appear as the first sequence in a complex Golay pair (up to equivalence). Second, we use a programmatic SAT solver to construct all sequences (if any) that pair off with the sequences constructed in the first stage to form a complex Golay pair.
In this article we demonstrate how to solve a variety of problems and puzzles using the built-in SAT solver of the computer algebra system Maple. Once the problems have been encoded into Boolean logic, solutions can be found (or shown to not exist) automatically, without the need to implement any search algorithm. In particular, we describe how to solve the n-queens problem, how to generate and solve Sudoku puzzles, how to solve logic puzzles like the Einstein riddle, how to solve the 15-puzzle, how to solve the maximum clique problem, and finding Graeco-Latin squares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.