The major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT. The immortalized cells have microglia-like morphology and express key microglial surface markers including CD11b, TGFβR, and P2RY12. Importantly, these cells were confirmed to be of human origin by sequencing. The RNA expression profiles identified by RNA-seq are also characteristic of microglial cells. Furthermore, the cells demonstrate the expected migratory and phagocytic activity, and the capacity to mount an inflammatory response characteristic of primary microglia. The immortalization method has also been successfully applied to a wide range of microglia from other species (macaque, rat, and mouse). To investigate different aspects of HIV molecular regulation in CNS, the cells have been superinfected with HIV reporter viruses and latently infected clones have been selected that reactive HIV in response to inflammatory signals. The cell lines we have developed and rigorously characterized will provide an invaluable resource for the study of HIV infection in microglial cells as well as studies of microglial cell function.Electronic supplementary materialThe online version of this article (doi:10.1007/s13365-016-0499-3) contains supplementary material, which is available to authorized users.
We showed previously that the histone lysine methyltransferase (HKMT) H3K27me3 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 (PRC2) and is required for the maintenance of HIV-1 latency in Jurkat T cells. Here we show, by using chromatin immunoprecipitation experiments, that both PRC2 and euchromatic histone-lysine N-methyltransferase 2 (EHMT2), the G9a H3K9me2-3 methyltransferase, are highly enriched at the proviral 5′ long terminal repeat (LTR) and rapidly displaced upon proviral reactivation. Clustered regularly interspaced short palindromic repeat(s) (CRISPR)-mediated knockout of EZH2 caused depletion of both EZH2 and EHMT2, but CRISPR-mediated knockout of EHMT2 was selective for EHMT2, consistent with the failure of EHMT2 knockouts to induce latent proviruses in this system. Either (i) knockout of methyltransferase by short hairpin RNA in Jurkat T cells prior to HIV-1 infection or (ii) inhibition of the enzymes with drugs significantly reduced the levels of the resulting silenced viruses, demonstrating that both enzymes are required to establish latency. To our surprise, inhibition of EZH2 (by GSK-343 or EPZ-6438) or inhibition of EHMT2 (by UNC-0638) in the Th17 primary cell model of HIV latency or resting memory T cells isolated from HIV-1-infected patients receiving highly active antiretroviral therapy, was sufficient to induce the reactivation of latent proviruses. The methyltransferase inhibitors showed synergy with interleukin-15 and suberanilohydroxamic acid. We conclude that both PRC2 and EHMT2 are required for the establishment and maintenance of HIV-1 proviral silencing in primary cells. Furthermore, EZH2 inhibitors such as GSK-343 and EPZ-6438 and the EHMT2 inhibitor UNC-0638 are strong candidates for use as latency-reversing agents in clinical studies.
SignificanceThe molecular mechanisms leading to the creation and maintenance of the latent HIV reservoir remain incompletely understood. Unbiased shRNA screens showed that the estrogen receptor acts as a potent repressor of proviral reactivation in T cells. Antagonists of ESR-1 activate latent HIV-1 proviruses while agonists, including β-estradiol, potently block HIV reactivation. Using a well-matched set of male and female donors, we found that ESR-1 plays an important role in regulating HIV transcription in both sexes. However, women are much more responsive to estrogen and appear to harbor smaller inducible RNA reservoirs. Accounting for the impact of estrogen on HIV viral reservoirs will therefore be critical for devising curative therapies for women, a group representing 51% of global HIV infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.