This study assessed the effects of COVID-19 home confinement on physical activity, sedentary behavior, smartphone use, and sleep patterns. Data was collected in a sample of 20 young adults (mean age ± SD: 22.6 ± 3.4 years; 55% males) over seven days pre- and during the COVID-19 lockdown. Objective and subjective physical activity (Accelerometer and the International Physical Activity Questionnaire (IPAQ), respectively), the number of hours sitting (IPAQ), objectively-measured smartphone use (smartphone screen time applications), and objective and subjective sleep (accelerometer and the Pittsburgh Sleep Quality Index, respectively) were assessed. Results revealed significantly greater walking time and mean steps (p < 0.001, d = 1.223 to 1.605), and moderate and vigorous physical activity (p < 0.05, d = 0.568 to 0.616), in the pre- compared with the during-COVID-19 lockdown phase. Additionally, smartphone use (p = 0.009, d = 0.654), sitting time (p = 0.002, d = 1.120), and total sleep (p < 0.004, d = 0.666) were significantly greater in the during- compared with the pre-COVID-19 lockdown phase. Multiple regressions analyses showed associations between physical activity and sedentary behavior and sleep quality. The number of hours sitting per day and moderate-to-vigorous physical activity significantly predicted deep sleep (adj.R2 = 0.46). In conclusion, this study revealed that during the COVID-19 outbreak, behaviors changed, with participants spending less time engaging in physical activity, sitting more, spending more time using the smartphone, and sleeping more hours. These findings may be of importance to make recommendations, including lifestyle modifications during this time.
Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.
Although previous reports indicate that exercise improves cognitive function in normoxia, the influence of exercise on cognitive function in hypoxia is unknown. The purpose of this study was to determine if the impaired cognitive function in hypoxia can be restored by low to moderate intensity exercise. Sixteen young healthy men completed the ANAM versions of the Go/No-Go task (GNT) and Running Memory Continuous Performance Task (RMCPT) in normoxia to serve as baseline (B-Norm) (21% O2). Following 60 minutes of exposure to normobaric hypoxia (B-Hypo) (12.5% O2), these tests were repeated at rest and during cycling exercise at 40% and 60% of adjusted Vo2max. At B-Hypo, the % correct (p≤0.001) and throughput score (p≤0.001) in RMCPT were significantly impaired compared to B-Norm. During exercise at 40% (p=0.023) and 60% (p=0.006) of adjusted Vo2max, the throughput score in RMCPT improved compared to B-Hypo, and there was no significant difference in throughput score between the two exercise intensities. Mean reaction time also improved at both exercise intensities compared to B-Hypo (p≤0.028). Both peripheral oxygen saturation (Spo2) and regional cerebral oxygen saturation (rSo2) significantly decreased during B-Hypo (p≤0.001) and further decreased at 40% (p≤0.05) and 60% (p≤0.039) exercise. There was no significant difference in Spo2 or rSo2 between two exercise intensities. These data indicate that low to moderate exercise (i.e., 40%-60% adjusted Vo2max) may attenuate the risk of impaired cognitive function that occurs in hypoxic conditions.
This study assesses the associations of objectively-measured smartphone time with physical activity, sedentary behavior, mood, and sleep patterns among young adults by collecting real-time data of the smartphone screen-state. The sample consisted of 306 college-aged students (mean age ± SD: 20.7 ± 1.4 years; 60% males). Over seven days of time, the following variables were measured in the participants: objectively-measured smartphone use (Your Hour and Screen Time applications), objective and subjective physical activity (GoogleFit and Apple Health applications, and the International Physical Activity Questionnaire (IPAQ), respectively), the number of hours sitting (IPAQ), mood (The Profile of Mood State (POMS)), and sleep (The Pittsburgh Sleep Quality Index (PSQI)). Multiple regressions analyses showed that the number of hours sitting per day, physical activity, and the POMS Global Score significantly predicted smartphone use (adj.R2 = 0.15). Further, participants with low levels of physical activity were more likely to increase the use of smartphones (OR = 2.981). Moreover, mood state (β = 0.185; 95% CI = 0.05, 0.32) and sleep quality (β = 0.076; 95% CI = −0.06, 0.21) predicted smartphone use, with those reporting poor quality of sleep (PSQI index >5) being more likely to use the smartphone (OR = 2.679). In conclusion, there is an association between objectively-measured smartphone use and physical activity, sedentary behavior, mood, and sleep patterns. Those participants with low levels of physical activity, high levels of sedentary behavior, poor mood state, and poor sleep quality were more likely to spend more time using their smartphones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.