Whereas electron withdrawing substituents retard the rate of aryltrifluoroborate solvolysis, electron-donating groups enhance it. Herein is presented a Hammett analysis of the solvolytic lability of aryltrifluoroborates where log(k(solv)) values correlate to sigma values with a rho value of approximately -1. This work provides a predictable rubric for tuning the reactivity of boron for several uses including (18)F-labeled PET reagents and has mechanistic implications for ArBF(3)-enhanced ligandless metal-mediated cross coupling reactions with aryltrifluoroborates.
The use of a boronic ester as a captor of aqueous [(18)F]-fluoride has been previously suggested as a means of labeling biomolecules in one step for positron emission tomography (PET) imaging. For this approach to be seriously considered, the [(18)F]-labeled trifluoroborate should be humorally stable such that it neither leaches free [(18)F]-fluoride to the bone nor accumulates therein. Herein, we have synthesized a biotinylated boronic ester that is converted to the corresponding trifluoroborate salt in the presence of aqueous [(18)F]-fluoride. In keeping with its in vitro aqueous kinetic stability at pH 7.5, the trifluoroborate appears to clear in vivo quite rapidly to the bladder as the stable trifluoroborate salt with no detectable leaching of free [(18)F]-fluoride to the bone. When this labeled biotin is preincubated with avidin, the pharmacokinetic clearance of the resulting complex is visibly altered. This work validates initial claims that boronic esters are potentially useful as readily labeled precursors to [(18)F]-PET reagents.
The redesign of azamacrocyclic CXCR4 chemokine receptor antagonists resulted in the discovery of novel, small molecule, orally bioavailable compounds that retained T-tropic (CXCR4 using, X4) anti-HIV-1 activity. A structure-activity relationship (SAR) was determined on the basis of the inhibition of replication of X4 HIV-1 NL4.3 in MT-4 cells. As a result of lead optimization, we identified (S)-N'-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butane-1,4-diamine (AMD070) 2 as a potent and selective antagonist of CXCR4 with an IC(50) value of 13 nM in a CXCR4 125I-SDF inhibition binding assay. Compound 2 inhibited the replication of T-tropic HIV-1 (NL4.3 strain) in MT-4 cells and PBMCs with an IC(50) of 2 and 26 nM, respectively, while remaining noncytotoxic to cells at concentrations exceeding 23 microM. The pharmacokinetics of 2 was evaluated in rat and dog, and good oral bioavailability was observed in both species. This compound represents the first small molecule orally bioavailable CXCR4 antagonist that was developed for the treatment of HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.