A new function split option for the next generation fronthaul interface (NGFI) is demonstrated based on all-digital RF transmitter using bandpass delta-sigma modulation. Different from other low layer split (LLS) options, such as option 6 (MAC-PHY), 7 (high-low PHY), and 8 (CPRI), the proposed option 9 implements RF functions in the digital domain, and splits within the RF layer, with high-RF layer centralized in the distributed unit (DU) and low-RF layer distributed in remote radio units (RRUs). A proof-of-concept all-digital RF transmitter based on real-time delta-sigma modulation is implemented using a Xilinx Virtex-7 FPGA. A 5-GSa/s delta-sigma modulator is demonstrated to encode LTE/5G signals with bandwidth up to 252 MHz and modulation format up to 1024-QAM to a 5-Gb/s OOK signal, which is transmitted over 30-km single-mode fiber from DU to RRU. To relax the FPGA speed requirement, a 32-pipeline architecture is designed. Two-carrier aggregation of 5G and 14-carrier aggregation of LTE signals are demonstrated with error vector magnitude (EVM) performance satisfying the 3GPP specifications. Compared with option 8 (CPRI), although the proposed option 9 split occurs at a lower level, it offers improved spectral efficiency and reduced NGFI data rate than CPRI. Moreover, other LLS options, such as 6, 7, and 8, all require a complete RF layer implemented in the analog domain at remote cell sites; whereas option 9 realizes high-RF layer in the digital domain at DU, and eliminates the need of analog RF devices, such as DAC, local oscillator and mixer at RRU, which not only makes low-cost, energy-efficient, and small-footprint cell sites possible for the wide deployment of small cells, but also paves the road toward software defined radio (SDR) and virtualization of DU and RRU for improved compatibility and reconfigurability among multiple radio access technologies (multi-RATs). Given its centralized architecture and deterministic latency, option 9 is suitable for radio coordination applications, and has potential in low-frequency narrowband scenarios with cost, power, and/or size sensitive cell sites, such as massive machine type communication (mMTC) and narrowband internet of things (NB-IoT). Index Terms-All-digital RF transmitter, delta-sigma modulation, fronthaul, NGFI, software defined radio. I. INTRODUCTION T HE emerging video-intensive and bandwidth-consuming services, e.g., virtual reality, augmented reality, immersive applications, are driving the explosive growth of mobile data traffic [1]-[3], making radio access networks (RAN) become
We first demonstrate delta-sigma digitization and coherent transmission of data over cable system interface specification (DOCSIS) 3.1 signals in a hybrid fiber coax (HFC) network. Twenty 192-MHz DOCSIS 3.1 channels with modulation up to 16384QAM are digitized by a low-pass cascade resonator feedback (CRFB) delta-sigma analog-to-digital converter (ADC) and transmitted over 80 km fiber using coherent single-λ 128-Gb/s dual-polarization (DP)-QPSK and 256-Gb/s DP-16QAM optical links. Both one-bit and two-bit delta-sigma digitization are implemented and supported by the QPSK and 16QAM coherent transmission systems, respectively. To facilitate its practical application in access networks, the coherent system is built using a low-cost narrowband optical modulator and RF amplifiers. Modulation error ratio (MER) larger than 50 dB is successfully demonstrated for all 20 DOCSIS 3.1 channels, and high order modulation up to 16384QAM is delivered over fiber for the first time in HFC networks. The raw DOCSIS data capacity is 54 Gb/s with net user information ~45 Gb/s. Moreover, the bit error ratio (BER) tolerance is evaluated by measuring the MER performance as BER increases. Negligible MER degradation is observed for BER up to 1.5 × 10 −6 and 1.7 × 10 −4 , for one-bit and two-bit digitization, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.