The photons in circularly polarized light can transfer their quantized spin angular momentum to micro- and nanostructures via absorption and scattering. This normally exerts positive torque on the objects wher the sign (i.e., handedness or angular direction) follows that of the spin angular momentum. Here we show that the sign of the optical torque can be negative in mesoscopic optical matter arrays of metal nanoparticles (NPs) assembled in circularly polarized optical traps. Crossover from positive to negative optical torque, which occurs for arrays with different number, separation and configuration of the constituent particles, is shown to result from many-body interactions as clarified by electrodynamics simulations. Our results establish that both positive and negative optical torque can be readily realized and controlled in optical matter arrays. This property and reconfigurability of the arrays makes possible programmable materials for optomechanical, microrheological and biological applications.
The creation of optically
powered self-assembling nano-to-meso-scale machines that do work is a
long-standing goal in photonics. We demonstrate an optical matter (OM)
machine that converts the spin angular momentum (SAM) of light into
orbital angular momentum (OAM) to do mechanical work. The specific OM
machine we study is based on a sixfold symmetric hexagonally ordered
nanoparticle array that operates as an OM “gear” that is assembled and
made to rotate in a circularly polarized Gaussian beam. The rotational
symmetry of the OM gear leads to a selection rule for the allowed
scattering modes based on their angular momentum. Electrodynamics
calculations show that the collective scattering modes with the
largest angular momentum scatter strongly in the transverse direction.
Simulations and experiments show that the angular momentum that
accompanies the scattered light causes a “negative torque” response on
the OM gear and drives a “probe” particle placed outside the OM gear
around the gear in an asymmetric force field analogously to Brownian
ratchets. The gear–probe OM machine concept can be expanded to
applications in nanofluidics and particle sorting.
In many developing nations, cervical cancer screening is done by visual inspection with acetic acid (VIA). Monitoring and evaluation (M&E) of such screening programs is challenging. An enhanced visual assessment (EVA) system was developed to augment VIA procedures in low-resource settings. The EVA System consists of a mobile colposcope built around a smartphone, and an online image portal for storing and annotating images. A smartphone app is used to control the mobile colposcope, and upload pictures to the image portal. In this paper, a new app feature that documents clinical decisions using an integrated job aid was deployed in a cervical cancer screening camp in Kenya. Six organizations conducting VIA used the EVA System to screen 824 patients over the course of a week, and providers recorded their diagnoses and treatments in the application. Real-time aggregated statistics were broadcast on a public website. Screening organizations were able to assess the number of patients screened, alongside treatment rates, and the patients who tested positive and required treatment in real time, which allowed them to make adjustments as needed. The real-time M&E enabled by “smart” diagnostic medical devices holds promise for broader use in screening programs in low-resource settings.
While transverse phase gradients enable studies of driven nonequilibrium phenomena in optical trapping, the behavior of electrodynamically interacting particles in a transverse phase gradient has not been explored in detail. In this Letter we study electrodynamically interacting pairs of identical nanoparticles (homodimers) in transverse phase gradients. We establish that the net driving force on homodimers is modulated by a separation-dependent interference effect for small phase gradients. By contrast, large phase gradients break the symmetry of the interaction between particles and profoundly change the electrodynamic interparticle energy landscape. Our findings are particularly important for understanding multiparticle dynamics during the self-assembly and rearrangement of optical matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.