This review summarizes the evidence for boron essentiality across the biological spectrum with special focus on biochemical pathways and biomolecules relevant to immune function. Boron is an essential trace element for at least some organisms in each of the phylogenetic kingdoms Eubacteria, Stramenopila (brown algae and diatoms), Viridiplantae (green algae and familiar green plants), Fungi, and Animalia. Discovery of several of the currently recognized boron-containing biomolecules was achieved because the bound boron formed four coordinate covalent bonds with the ligand, creating a thermodynamically stable complex that is almost undissociable in water. Boron is a constitutive element in three antibiotics and a quorum-sensing signal in bacteria. It enhances Fc receptor expression and interleukin-6 production in cultured mammalian macrophages. Boron binds tightly to the diadenosine polyphosphates and inhibits the in vitro activities of various serine protease and oxidoreductase enzymes. Physiological amounts of dietary boron decrease skinfold thickness after antigen injection in gilts and elevated circulating natural killer cells after adjuvant injection in rats. It is predicted that several boron biomolecules waiting discovery are signaling molecules that interact with the cell surface and are probably composed of two mirror or near-mirror halves stabilized by a single boron atom to form a large circular biomolecule. J. Trace Elem. Exp. Med. 16:291À306,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.