These results provide further evidence that ROS play a role in female reproductive function.
Ovarian cancer has the highest mortality rate of gynaecological cancers. This is partly due to the lack of effective screening markers. Here, we used oligonucleotide microarrays complementary to B12 000 genes to establish a gene-expression microarray (GEM) profile for normal ovarian tissue, as compared to stage III ovarian serous adenocarcinoma and omental metastases from the same individuals. We found that the GEM profiles of the primary and secondary tumours from the same individuals were essentially alike, reflecting the fact that these tumours had already metastasised and acquired the metastatic phenotype. We have identified a novel biomarker, mammaglobin-2 (MGB2), which is highly expressed specific to ovarian cancer. MGB2, in combination with other putative markers identified here, could have the potential for screening. Ovarian cancer is the leading cause of death from gynaecological malignancy, with an estimated 24 000 and 6800 new cases in the US and UK, respectively, during (Greenlee et al, 2001Swerdlow et al, 2001). Early-stage disease is largely asymptomatic, and most patients are diagnosed when disease has spread beyond the pelvis with an associated 5-year survival of less than 20% (Ozols, 2002). This is partly due to the lack of reliable screening strategies. While around 90% of women with advanced disease have elevated serum CA125, this marker alone is neither sufficiently sensitive nor specific for use as a screening tool (Menon and Jacobs, 2001). Despite new cytotoxic regimens, survival has remained largely unchanged over the past 20 years. Identification of new molecular signatures of early disease is a key goal of ovarian cancer research.Gene-expression microarray (GEM) profiles have previously been used to compare the expression profile of ovarian cancer with that of the normal ovary (Ono et al, 2000;Welsh et al, 2001). We extended this approach by using a more extensive set of probes (Affymetrix U95Av2), and also characterised metastatic disease in a search for molecular markers of progression. We investigated the potential specificity of a number of putative biomarkers by examining their expression in a panel of other epithelial tissues and tumours. MATERIALS AND METHODS Ovarian tissue samplesFour snap-frozen normal ovarian samples, and six pairs of primary and omental serous adenocarcinoma (Stage IIIC) from the same individuals were collected at the time of surgery at the University College Hospitals NHS Trust. The six paired samples of primary and secondary ovarian cancer were taken at the time of primary surgery prior to chemotherapeutic intervention. The normal ovarian samples were taken at the time of surgery for benign disease. H&E-stained sections were examined and verified histopathologically to be stage III serous adenocarcinomas. All samples comprised at least 70% tumour, except one omental sample which had 5% tumour content. The normal ovarian samples were verified to be free of any pathology, including benign cysts. Ovarian epithelium was macrodissected from the underlying stroma...
Tumor formation may result from the activation of dominant oncogenes or by inactivation of recessive, tumor suppressor genes. The role of such mutations in the development of pituitary tumors has been studied. Tumors from 88 patients, representing the 4 major classes of adenoma, were investigated. In DNA extracted from matched leukocyte and tumor samples, allelic deletions were sought with 15 probes identifying restriction fragment length polymorphisms on chromosomes 1, 5, 10, 11, 13, 17, 20, and 22. Evidence of amplification or rearrangement of 10 recognized cellular oncogenes (N-ras, mycL1, mycN, myc, H-ras, bcl1, H-stf1, sea, kraS2, and fos) was sought in tumor DNA. Activating dominant mutations of Gs alpha were detected using the polymerase chain reaction to amplify exons 7-10 and hybridizing the product to normal and mutant allele-specific oligonucleotides. Allelic deletions on chromosome 11 were identified in 16 tumors (18%) representing all 4 major subtypes. Deletions on other autosomes were observed in less than 6% of tumors. Three adenomas had deletions on multiple autosomes, 2 of these were aggressive and recurrent. Mutations of Gs alpha were confirmed to be specific to somatotrophinomas, being identified in 36% of such tumors in this series. No evidence of amplification or rearrangement of other recognized cellular oncogenes was found. Inactivation of a recessive oncogene on chromosome 11 is an important and possibly early event in the development of the four major types of pituitary adenoma, whereas activating mutations of Gs alpha are confirmed to be specific to somatotropinomas. Two aggressive tumors were found to have multiple autosomal losses, suggesting a multistep progression in the development of tumors of this phenotype.
Non-neoplastic epithelial lesions of the vulva (NNEDV) lichen sclerosus (LS) and squamous hyperplasia (SH) have been implicated in the pathogenesis of squamous cell carcinoma of the vulva (SCC). To date, there have been no recognisable precursor lesions for SCC associated with NNEDV. TP53 is the most frequent genetic change in human cancers and can indicate both aetiology and molecular pathogenesis of tumours. A total of 27 SCC patients underwent immunohistochemistry (IHC) and TP53 mutational analysis using microdissection and direct sequencing. There were 19 patients with areas of adjacent epidermis: 17 had NNEDV (four SCCs had more than one adjacent lesion) and two had normal epidermis. In all, 70.4% of the SCCs, 40% LS and 22.2% SH demonstrated overexpression of p53. In total, 77.8% of SCCs, 46.7% of LS and 22.2% SH demonstrated mutations in TP53, with the majority of lesions having a mutation in codon 136. Eight cases were identified where the same mutation was identified in the SCC and in the adjacent area. These data suggest that TP53 mutations develop in NNEDV and are intrinsic to the clonal evolution that leads to SCC. The type of mutation detected is more likely to occur due to endogenous cellular changes rather than exogenous carcinogen exposure. British Journal of Cancer (2003) Lichen sclerosus (LS) is an inflammatory disease of unknown aetiology and pathogenesis. It is a disorder of the skin, which is most common in the genital area but can occur anywhere on the body. It affects both sexes and all age groups. In a review by Meffert et al (1995) of 5207 patients, the female-to-male incidence was reported as 6 : 1, with genital involvement in 83% of cases. The majority of sufferers of anogenital LS are either middle-aged or elderly women. The predominant symptom in females is an intractable itch, which is often associated with dysuria, dyspareunia, dryness of the skin, labial stenosis or fusion and, in children, constipation (Laude et al, 1980).There have been many studies assessing the risk of squamous cell carcinoma of the vulva (SCC) in inflammatory diseases of the vulva. Wallace (1971) reported that 12 of 290 (4%) patients developed SCC following a history of LS during a 12-year period but further follow-up studies have shown a wide range of risk of progression (Hart et al, 1975;Meffert et al, 1995;Carlson et al, 1998). Others (Rueda et al, 1994;Scurry et al, 1997;Vilmer et al, 2000) have looked at the skin adjacent to SCC which, not uncommonly, shows epithelial disorders; the most common are LS and squamous hyperplasia (SH).The TP53 gene is located on chromosome 17p13.1; it consists of 11 exons with 10 introns. Exon 1 is noncoding, while exons 5 -8 are part of the highly evolutionarily conserved domain. Mutations in the TP53 gene are the most frequent genetic changes in human cancers, and the spectrum of mutations can indicate tumour aetiology and molecular pathogenesis (Levine et al, 1991;Greenblatt et al, 1994). In addition, a comparison of the mutation profile between malignant and potential p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.