This review addresses research on the overlap in physical child abuse and domestic violence, the prediction of child outcomes, and resilience in children exposed to family violence. The authors explore current findings on the intersection of physical child abuse and domestic violence within the context of other risk factors, including community violence and related family and environmental stressors. Evidence from the studies reviewed suggests considerable overlap, compounding effects, and possible gender differences in outcomes of violence exposure. The data indicate a need to apply a broad conceptualization of risk to the study of family violence and its effects on children. Further testing of competing theoretical models will advance understanding of the pathways through which exposure leads to later problems in youth, as well as protective factors and processes through which resilience unfolds.
Background & Aims Cirrhosis and liver cancer are potential outcomes of advanced nonalcoholic fatty liver disease (NAFLD). It is not clear what factors determine whether patients will develop advanced or mild NAFLD, limiting non-invasive diagnosis and treatment before clinical sequelae emerge. We investigated whether DNA methylation profiles can distinguish patients with mild disease from those with advanced NAFLD, and how these patterns are functionally related to hepatic gene expression. Methods We collected frozen liver biopsies and clinical data from patients with biopsy-proven NAFLD (56 in the discovery cohort and 34 in the replication cohort). Samples were divided into groups based on histologic severity of fibrosis: F0–1 (mild) and F3–4 (advanced). DNA methylation profiles were determined and coupled with gene expression data from the same biopsies; differential methylation was validated in subsets of the discovery and replication cohorts. We then analyzed interactions between the methylome and transcriptome. Results Clinical features did not differ between patients known to have mild or advanced fibrosis based on biopsy analysis. There were 69,247 differentially methylated CpG sites (76% hypomethylated, 24% hypermethylated) in patients with advanced vs mild NAFLD (P<.05). Methylation at FGFR2, MAT1A, and CASP1 was validated by bisulfite pyrosequencing and the findings were reproduced in the replication cohort. Methylation correlated with gene transcript levels for 7% of differentially methylated CpG sites, indicating that differential methylation contributes to differences in expression. In samples with advanced NAFLD, many tissue repair genes were hypomethylated and overexpressed, whereas genes in certain metabolic pathways, including 1-carbon metabolism, were hypermethylated and under-expressed. Conclusions Functionally relevant differences in methylation can distinguish patients with advanced vs mild NAFLD. Altered methylation of genes that regulate processes such as steatohepatitis, fibrosis, and carcinogenesis indicate the role of DNA methylation in progression of NAFLD.
Context In February 2002, the allocation system for liver transplantation became based on the Model for End-Stage Liver Disease (MELD) score. Before MELD, black patients were more likely to die or become too sick to undergo liver transplantation compared with white patients. Little information exists regarding sex and access to liver transplantation. Objective To determine the association between race, sex, and liver transplantation following introduction of the MELD system. Design, Setting, and Patients A retrospective cohort of black and white patients (≥ 18 years) registered on the United Network for Organ Sharing liver transplantation waiting list between January 1, 1996, and December 31, 2000 (pre-MELD cohort, n=21 895) and between February 28, 2002, and March 31, 2006 (post-MELD cohort, n=23 793). Main Outcome Measures Association between race, sex, and receipt of a liver transplant. Separate multivariable analyses evaluated cohorts within each period to identify predictors of time to death and the odds of dying or receiving liver transplantation within 3 years of listing. Patients with hepatocellular carcinoma were analyzed separately. Results Black patients were younger (mean [SD], 49.2 [10.7] vs 52.4 [9.2] years; P < .001) and sicker (MELD score at listing: median [interquartile range], 16 [12–22] vs 14 [11–19]; P < .001) than white patients on the waiting list for both periods. In the pre-MELD cohort, black patients were more likely to die or become too sick for liver transplantation than white patients (27.0% vs 21.7%) within 3 years of registering on the waiting list (odds ratio [OR], 1.51; 95% confidence interval (CI), 1.15–1.98; P = .003). In the post-MELD cohort, black race was no longer associated with increased likelihood of death or becoming too sick for liver transplantation (26.5% vs 22.0%, respectively; OR, 0.96; 95% CI, 0.74–1.26; P = .76). Black patients were also less likely to receive a liver transplant than white patients within 3 years of registering on the waiting list pre-MELD (61.6% vs 66.9%; OR, 0.75; 95% CI, 0.59–0.97; P = .03), whereas post-MELD, race was no longer significantly associated with receipt of a liver transplant (47.5% vs 45.5%, respectively; OR, 1.04;95%CI, 0.84–1.28; P = .75).Women were more likely than men to die or become too sick for liver transplantation post-MELD (23.7% vs 21.4%; OR, 1.30; 95%CI, 1.08–1.47; P = .003) vs pre-MELD (22.4% vs 21.9%; OR, 1.08; 95% CI, 0.91–1.26; P = .37). Similarly, women were less likely than men to receive a liver transplant within 3 years both pre-MELD (64.8% vs 67.6%; OR, 0.80; 95% CI, 0.70–0.92; P = .002) and post-MELD (39.9% vs 48.7%; OR, 0.70; 95% CI, 0.62–0.79; P < .001). Conclusion Following introduction of the MELD score to the liver transplantation allocation system, race was no longer associated with receipt of a liver transplant or death on the waiting list, but disparities based on sex remain.
Clinicians rely upon the severity of liver fibrosis to segregate patients with well-compensated nonalcoholic fatty liver disease (NAFLD) into sub-populations at high versus low-risk for eventual liver-related morbidity and mortality. We compared hepatic gene expression profiles in high- and low-risk NAFLD patients to identify processes that distinguish the two groups and hence, might be novel biomarkers or treatment targets. Microarray analysis was used to characterize gene expression in percutaneous liver biopsies from low-risk, “mild” NAFLD patients (fibrosis stage 0–1, n=40) and high risk, “severe” NAFLD patients (fibrosis stage 3–4, n=32). Findings were validated in a second, independent cohort and confirmed by real time PCR and immunohistochemistry. As a group, patients at risk for bad NAFLD outcomes had significantly worse liver injury and more advanced fibrosis (severe NAFLD) than clinically-indistinguishable NAFLD patients with a good prognosis (mild NAFLD). A 64 gene profile reproducibly differentiated severe NAFLD from mild NAFLD, and a 20 gene subset within this profile correlated with NAFLD severity, independent of other factors known to influence NAFLD progression. Multiple genes involved with tissue repair/regeneration and certain metabolism-related genes were induced in severe NAFLD. Ingenuity Pathway Analysis and immunohistochemistry confirmed deregulation of metabolic and regenerative pathways in severe NAFLD, and revealed overlap among the gene expression patterns of severe NAFLD, cardiovascular disease, and cancer. Conclusion By demonstrating specific metabolic and repair pathways that are differentially activated in livers with severe NAFLD, gene profiling identified novel targets that can be exploited to improve diagnosis and treatment of patients who are at greatest risk for NAFLD-related morbidity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.