GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD ؉ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD ؉ turnover, which makes NAD ؉ modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD ؉ and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD ؉ repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.
Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1–4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR–Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB–FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.
Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.
GMX1778 was recently shown to function as a potent inhibitor of nicotinamide phosphoribosyl transferase. To translate the discovery of GMX1778 mechanism of action into optimal clinical use of its intravenously administered prodrug, GMX1777, the efficacy of GMX1777 was evaluated in xenograft models and the pharmacokinetic profile of GMX1778 and its effect on nicotinamide adenine dinucleotide cellular levels was measured by liquid chromatography/mass spectrometry. Consistent with the requirement for a prolonged exposure for cytotoxicity in vitro, a dose of 75 mg/kg of GMX1777 administered as two bolus intravenous injections in 1 day were not effective at reducing the growth of multiple myeloma (IM-9) tumors, whereas the same dose of GMX1777 administered over a 24 h intravenous infusion caused tumor regression in the IM-9 model, a small-cell lung cancer (SHP-77) model, and a colon carcinoma (HCT-116) model. A 72 h continuous intravenous infusion of GMX1777 was also effective in the IM-9 model, but was associated with a smaller therapeutic index. GMX1777 at a dose of 75 mg/kg administered over a 24 h intravenous infusion produced GMX1778 steady-state plasma levels of approximately 1 microg/ml and caused nicotinamide adenine dinucleotide levels to decrease significantly in tumors. Consistent with the GMX1778 mechanism of action, nicotinic acid protected mice treated with a lethal dose of GMX1777. These data support the design of an open-label, dose-escalation trial, in which patients with refractory solid tumors and lymphomas receive 24 h infusions of GMX1777 as a single agent in 3-week cycles. Furthermore, these results indicate that nicotinic acid is a potent antidote to treat GMX1777 overdose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.