The functional consequences of Connexin43 (Cx43) phosphorylation remain largely unexplored. Using an antibody that specifically recognizes Cx43 phosphorylated at serine residues 325, 328 and/or 330 (pS325/328/330-Cx43), we show that labeling of this form of Cx43 as well as of total Cx43 is restricted to the intercalated disk region of normal ventricular tissue. In ischemic heart, significant relocalization of total Cx43 to the lateral edges of myocytes was evident; however pS325/328/330-Cx43 remained predominately at the intercalated disk. Western blots indicated a eightfold decrease in pS325/328/330-Cx43 in ischemic tissue. Peptide-binding- and competition-experiments indicated that our antibody mainly detected Cx43 phosphorylated at S328 and/or S330 in heart tissue. To evaluate how this change in Cx43 phosphorylation contributes to ischemia-induced downregulation of intercellular communication, we stably transfected Cx43-/- cells with a Cx43 construct in which serine residues 325, 328 and 330 had been mutated to alanine (Cx43-TM). Cx43-TM was not efficiently processed to isoforms that have been correlated with gap junction assembly. Nevertheless, Cx43-TM cells were electrically coupled, although development of coupling was delayed. Fully opened channels were only rarely observed in Cx43-TM cells, and Lucifer-Yellow-dye-coupling was significantly reduced compared with wild-type cells. These data suggest that phosphorylation of Cx43 at serine residues 325, 328 and/or 330 influences channel permselectivity and regulates the efficiency of gap junction assembly.
Phosphorylation of members of the connexin family of gap junction proteins has been correlated with gap junction assembly, but the mechanisms involved remain unclear. We have examined the role of casein kinase 1 (CK1) in connexin-43 (Cx43) gap junction assembly. Cellular co-immunoprecipitation experiments and in vitro CK1 phosphorylation reactions indicate that CK1 interacted with and phosphorylated Cx43, initially on serine(s) 325, 328, or 330.32 P i -Metabolically labeled cells treated with CKI-7, a specific CK1 inhibitor, showed a reduction in Cx43 phosphorylation on site(s) that can be phosphorylated by CK1 in vitro. To examine CK1 function, normal rat kidney cells were treated with CKI-7, and Cx43 content was analyzed by Triton X-100 extraction, cell-surface biotinylation, and immunofluorescence. Western blot analysis indicated a slight increase in total Cx43, whereas gap junctional (Triton-insoluble) Cx43 decreased, and non-junctional plasma membrane Cx43 increased (as detected by cell surface biotinylation). Immunofluorescence experiments in the presence of CK1 inhibitor showed increases in Cx43 plasma membrane localization but not necessarily accumulation at cell-cell interfaces. Decreased gap junctional and phosphorylated Cx43 was also detected when cells were treated with IC261, a CK1 inhibitor specific for ␦ or ⑀ isoforms. These data suggest CK1␦ could regulate Cx43 gap junction assembly by directly phosphorylating Cx43.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.