a b s t r a c tIn this study, glycerol content and its incorporation method on tensile and barrier properties of biodegradable films (BF) based on cassava starch were analyzed. ANOVA showed that the glycerol incorporation method did not influence the results (P > 0.05), however the glycerol content influenced significantly the tensile and barrier properties of the films (P < 0.05). Films prepared with lower glycerol content presented better tensile and barrier properties than films with higher content. Films were then prepared with addition of clay nanoparticles and their tensile and barrier properties and glass transition temperature were measured. ANOVA indicated that both glycerol and clay nanoparticles influenced significantly the tensile and barrier properties (P < 0.05), diminishing film permeability when clay nanoparticles were present, while the glass transition temperature was not influenced (P > 0.05).
The rheological behavior of banana puree was determined using a dynamic stress rheometer with a pressure couette fixture, which allowed experiments to be conducted at high temperature. The pressure couette was pressurized with compressed air to 206.8 kPa (gage pressure) and experiments were carried out at temperatures ranging from 30 to 120 C. The shear stress values ranged from 10 to 170 Pa and the shear rate values from 10 À5 to 10 3 s À1. The model that best fitted the experimental data at all temperatures was the Herschel-Bulkley model. There was a usual tendency for the apparent viscosity to decrease with increasing temperature but an increase in apparent viscosity with increasing from 50 to 60 C and from 110 to 120 C was found. This could be due to interaction of polysaccharides present in banana puree. There was a slight difference between the apparent viscosity values for increasing shear stress sweeps and those for the decreasing shear stress sweeps suggesting time dependency of the rheological
A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A secondorder central composite design (2 2 ) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH's suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.