Chronic exposure to intermittent hypoxia (CIH) increases carotid sinus nerve activity in normoxia and in response to acute hypoxia. We hypothesized that CIH augments basal and chemoreflex-stimulated sympathetic outflow through an angiotensin receptor-dependent mechanism. Rats were exposed to CIH for 28 days: a subset was treated with losartan. Then, lumbar sympathetic activity was recorded under anesthesia during 20-second apneas, isocapnic hypoxia, and potassium cyanide. We measured carotid body superoxide production and expression of angiotensin II type-1 receptor, neuronal nitric oxide synthase, and NADPH oxidase. Sympathetic activity was higher in CIH vs. control rats at baseline, during apneas and isocapnic hypoxia, but not cyanide. Carotid body superoxide production and expression of angiotensin II type 1 receptor and gp91phox subunit of NADPH oxidase were elevated in CIH rats, whereas expression of neuronal nitric oxide synthase was reduced. None of these differences were evident in animals treated with losartan. CIH-induced augmentation of chemoreflex sensitivity occurs, at least in part, via the renin-angiotensin system.
Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling.
Background: Xanthine oxidase is a major source of superoxide in the vascular endothelium. Previous work in humans demonstrated improved conduit artery function following xanthine oxidase inhibition in patients with obstructive sleep apnea. Objectives: To determine whether impairments in endothelium-dependent vasodilation produced by exposure to chronic intermittent hypoxia are prevented by in vivo treatment with allopurinol, a xanthine oxidase inhibitor. Methods: Sprague-Dawley rats received allopurinol (65 mg/kg/day) or vehicle via oral gavage. Half of each group was exposed to intermittent hypoxia (FIO2 = 0.10 for 1 min, 15×/h, 12 h/day) and the other half to normoxia. After 14 days, gracilis arteries were isolated, cannulated with micropipettes, and perfused and superfused with physiological salt solution. Diameters were measured before and after exposure to acetylcholine (10–6M) and nitroprusside (10–4M). Results: In vehicle-treated rats, intermittent hypoxia impaired acetylcholine-induced vasodilation compared to normoxia (+4 ± 4 vs. +21 ± 6 µm, p = 0.01). Allopurinol attenuated this impairment (+26 ± 6 vs. +34 ± 9 µm for intermittent hypoxia and normoxia groups treated with allopurinol, p = 0.55). In contrast, nitroprusside-induced vasodilation was similar in all rats (p = 0.43). Neither allopurinol nor intermittent hypoxia affected vessel morphometry or systemic markers of oxidative stress. Urinary uric acid concentrations were reduced in allopurinol- versus vehicle-treated rats (p = 0.02). Conclusions: These data confirm previous findings that exposure to intermittent hypoxia impairs endothelium-dependent vasodilation in skeletal muscle resistance arteries and extend them by demonstrating that this impairment can be prevented with allopurinol. Thus, xanthine oxidase appears to play a key role in mediating intermittent hypoxia-induced vascular dysfunction.
In rats, acute exposure to hypoxia causes a decrease in mean arterial pressure (MAP) caused by a predominance of hypoxic vasodilation over chemoreflex-induced vasoconstriction. We previously demonstrated that exposure to chronic intermittent hypoxia (CIH) impairs hypoxic vasodilation in isolated resistance arteries; therefore, we hypothesized that the acute systemic hemodynamic responses to hypoxia would be altered by exposure to CIH. To test this hypothesis, rats were exposed to CIH for 14 days. Heart rate (HR) and MAP were monitored by telemetry. On the first day of CIH exposure, acute episodes of hypoxia caused a decrease in MAP (-9±5 mmHg) and an increase in HR (+45±4 beats/minute). On the 14th day of CIH exposure the depressor response was attenuated (-4±1 mmHg; 44% of the day 1 response) and the tachycardia enhanced (+68±2 beats/minute; 151% of the day 1 response). The observed time-dependent modulation of the acute hemodynamic responses to hypoxia may reflect important changes in neurocirculatory regulation that contribute to CIH-induced hypertension.
We previously demonstrated that chronic exposure to intermittent hypoxia (CIH) impairs endothelium-dependent vasodilation in rats. To determine the time course of this response, rats were exposed to CIH for 3, 14, 28, or 56 days. Then, we measured acetylcholine-and nitroprusside-induced vasodilation in isolated gracilis arteries. Also, we measured endothelial and inducible nitric oxide synthase, nitrotyrosine, and collagen in the arterial wall and urinary isoprostanes. Endotheliumdependent vasodilation was impaired after 2 weeks of CIH. Three days of CIH was not sufficient to produce this impairment and longer exposures (i.e. 4 and 8 weeks) did not exacerbate it. Impaired vasodilation was accompanied by increased collagen deposition. CIH elevated urinary isoprostane excretion, whereas there was no consistent effect on either isoform of nitric oxide synthase or nitrotyrosine. Exposure to CIH produces functional and structural deficits in skeletal muscle resistance arteries. These impairments develop within 2 weeks after initiation of exposure and they are accompanied by systemic evidence of oxidant stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.