Vascular anastomosis is the cornerstone of vascular, cardiovascular and transplant surgery. Most anastomoses are performed with sutures, which are technically challenging and can lead to failure from intimal hyperplasia and foreign body reaction. Numerous alternatives to sutures have been proposed, but none has proven superior, particularly in small or atherosclerotic vessels. We have developed a new method of sutureless and atraumatic vascular anastomosis that uses US Food and Drug Administration (FDA)-approved thermoreversible tri-block polymers to temporarily maintain an open lumen for precise approximation with commercially available glues. We performed end-to-end anastomoses five times more rapidly than we performed hand-sewn controls, and vessels that were too small (<1.0 mm) to sew were successfully reconstructed with this sutureless approach. Imaging of reconstructed rat aorta confirmed equivalent patency, flow and burst strength, and histological analysis demonstrated decreased inflammation and fibrosis at up to 2 years after the procedure. This new technology has potential for improving efficiency and outcomes in the surgical treatment of cardiovascular disease.
Background-Cells from the bone marrow contribute to ischemic neovascularization, but the identity of these cells remains unclear. The authors identify mesenchymal stem cells as a bone marrow-derived progenitor population that is able to engraft into peripheral tissue in response to ischemia.
Hemangiomas are the most common tumor of infancy, and although the natural history of these lesions is well described, their etiology remains unknown. One current theory attributes the development of hemangiomas to placentally-derived cells; however, conclusive evidence to support a placental origin is lacking. While placental tissue and hemangiomas do share molecular similarities, it is possible that these parallels are the result of analogous responses of endothelial cells and vascular progenitors to similar environmental cues. Specifically, both tissue types consist of actively proliferating cells that exist within a low oxygen, high estrogen environment. The hypoxic environment leads to an upregulation of hypoxia inducible factor-1alpha (HIF-1alpha) responsive chemokines such as stromal cell derived factor-1alpha (SDF-1alpha) and vascular endothelial growth factor (VEGF), both of which are known to promote the recruitment and proliferation of endothelial progenitor cells. Increased hormone levels in the postpartum period further potentiate the growth of these lesions. In this model, increased stabilization of HIF-1 in concert with increased levels of estrogen create a milieu that promotes new blood vessel development, ultimately contributing to the pathogenesis of infantile hemangiomas.
Purpose We conducted a systematic review of the literature to summarize the available data on reconstructive surgeries involving pinch reconstruction and elbow extension restoration in people with tetraplegia. Methods English-language and French-language articles and abstracts published between 1966 and February 2007, identified through MEDLINE and EMBASE searches, bibliography review, and expert consultation, were reviewed for original reports of outcomes with pinch reconstruction and elbow extension restoration in tetraplegic patients after a spinal cord injury. Two reviewers independently extracted data on patient characteristics, surgical methods, and patient outcomes. Results Our search identified 765 articles, of which 37 met eligibility criteria (one article contained information on both elbow and pinch procedures). Results from 377 pinch reconstructions in 23 studies and 201 elbow extension restorations in 14 studies were summarized. The mean Medical Research Council score for elbow extension went from 0 to 3.3 after reconstruction. The overall mean postoperative strength measured after surgery for pinch reconstruction was 2 kg. Conclusions More than 500 patients having these procedures experienced a clinically important improvement for both procedures—one restoring elbow extension, and the other, pinch strength. Upper-limb surgeries markedly improved the hand function of people with tetraplegia. Type of study/level of evidence Therapeutic IV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.